Behavioral responses to inheritance tax: Evidence from notches in France

Jonathan Goupille and Arturo Infante

12 février 2015

Motivation

Wealth is strongly concentrated Wealth can be transmitted from generation to generation

Estate tax : Trade-off between equity and efficiency

Equity :

- · Limit the perpetuation of inequality
- · Limit corporate power on the political process

Efficiency cost due to behavioral responses :

- Real responses harmful to the macroeconomic success of an economy (incentives for entrepreneurship, savings, labor supply)
- Shifting responses reduce efficiency of taxation to curb wealth inequality

Why do behavioral responses matter?

- Behavioral responses...
 - · Increase the efficiency cost of taxation
 - · Limit the redistributive ability of governments
- Nature of behavioral responses yields different policy implications : Saez et al. (2012)
 - · Real responses limit optimal top tax rate
 - · Shifting responses are a symptom of a poorly design tax system
- Very scarce empirical research on the effect of inheritance taxation on wealth accumulation
 - Kopczuk (2012), Holtz-Eakin and Marples (2001), Kopczuk and Slemrod (2000), Joulfaian (2006)
 - Lack of good micro data
 - Issue about how to identify the causal effect of taxation on wealth accumulation

This paper

Research Question :

Estimation and implications of behavioral responses to inheritance tax

- · Use the Preferential Tax Scheme for life insurance in France
 - · Generate large discontinuities in tax liability depending on :
 - · Life insurance policy start date (before and after November 20, 1991)
 - Age at which the premiums was paid (before or after 70 years old)
- · Estimate different behavioral responses to estate taxation over time
 - Timing responses using bunching estimation
 - · Aggregate of real and shifting responses using diff-in-diff method

Appendix

The Preferential tax scheme for life insurance

- · Introduced in 1965; entirely exempt life insurance from inheritance tax
- Reform of 1992 not retroactive
 - For life insurance policy taken out after 11/20/1991 : recall life insurance premiums paid after age 70 in the inheritance tax base
- Reform of 1998
 - All life insurance premiums not recalled in the inheritance tax base are taxed at a flat rate of 20% after an exemption of 152,500 \in by inheritor
- · Generate large discontinuities in tax liability depending on :
 - Life insurance policy start date (before and after November 20, 1991)
 - Age at which the premiums was paid (before or after 70 years old)

Appendix

The Preferential tax scheme for life insurance

TABLE 1: Life insurance taxation at death since 1998

	Insurance premiums paid Before aged 70 After aged 70		
Life insurance taken out			
Before 11/20/1991	Flat tax rate of 20%		
After 11/20/1991	Flat tax rate of 20% Recalled the inherit tax bas		

Note : Top inheritance tax rate goes up to 40% for spouses and direct descendants and 60% for collateral heirs.

FIGURE 1: Behavioral responses to the reform of the preferential tax scheme

- · Reform of the preferential tax scheme should induce :
 - · Re-timing responses at age 70
 - Shifting among asset portfolio
 - · Wealth dis-accumulation
- · Source of variations and estimation methods :
 - · Bunching estimation for timing responses
 - Difference in taxation at age 70 (for life insurance policies taken out after 11/20/1991)
 - Diff-in-diff estimation for aggregate real and shifting responses
 - Comparison of life insurance premiums paid before or after age 70 for life insurance policy taken out before or after 11/20/1991

Contributions :

- 1 Estimate different behavioral responses to estate taxation over time
 - · Timing responses in short and medium run :
 - Important short-term timing responses reflect moderate inter-temporal shifting in the medium term
 - · Aggregate elasticity of real and shifting responses
 - Medium-term elasticity = 0.35
 - Long-term elasticity = 0.24
- 2 Implications on wealth accumulation and bequest motives :
 - Evidence that individuals fail to plan for the disposition of an estate well in advance
 - · Evidence of "Wealth loving" motive
- Oevelop an inter-temporal model of transfer taxation to rationalize findings 1 to 2
- Optimal inheritance tax rate from estimated elasticity

Outline

Macro-series and Data

Macro-series Data

Empirical approach

Timing responses due to the notch Medium and long term responses to inheritance tax

Theoretical framework

Optimal inheritance tax rate

Appendix

Macro-series and Data ●O ○○	Empirical approach	Optimal inheritance tax rate	
Macro-series			

TABLE 2: Life insurance and wealth in France, 1984-2013

Year	Private Wealth	Wealth c	Wealth composition (in % of private wealth)			
real	(in % of national income)	of nal Tangible Liabilities		Financial inc. life assets assets		assets (in % of financial assets)
1985	304%	74%	-9%	35%	3%	8%
1995	330%	67%	-14%	47%	10%	21%
2005	466%	70%	-11%	41%	14%	34%
2013	597%	73%	-13%	40%	15%	38%

Sources : National Accounts from INSEE (France's National Institute of Statistics)

Macro-series and Data	Empirical approach	Optimal inheritance tax rate	Appendix
00 00	0000000000000 00000000		
Macro-series			

TABLE 3: Life insurance transmitted at death, 1984-2006

	Wealth at death			Wealth of the living		
Year	(1) Bequest flow	(2) Life insurance	(3) Life insurance (in % of (1))	(4) Private wealth	(5) Life insurance	(6) Life insurance (in % of (4))
1984	33,1	3,4	10%	3 512	94	3%
1987	35,4	4,5	13%	3 859	136	4%
1994	43,2	7,4	17%	4 584	386	8%
2000	59,2	12,5	21%	5 782	835	14%
2006	86,2	20,2	23%	8 962	1 198	13%

Sources : FFSA (French life insurance association), MTG surveys from DGFiP and National Accounts from INSEE.

All the aggregate flows are in billion 2013 euros.

Data

- French longitudinal data set from Axa (2003-2013)
 - · Detailed information about life insurance policy
- Two types of insured
 - · Insured taken out a standard life insurance policy (classical insured)
 - Wealthy insured that entrust Axa the management of their wealth (wealthy insured)

Data

- Three motives for life insurance
 - Cash reserve
 - 2 Supplemental retirement benefit
 - 3 Transmission at death
 - · Only 3 is affected by the preferential scheme
- · Conditions of inclusion in the data set
 - · Aged between 60 and 80 years old
 - · Having not terminated the life policy during lifetime
- Huge database : 350 000 individuals \times 23 quarterly years = 8 millions of observations
- Bunching sample Diff and diff sample

Macro-series and Data

Empirical approach

Theoretical framework

Optimal inheritance tax rate

Appendix

Outline

Macro-series and Data Macro-series Data

Empirical approach

Timing responses due to the notch Medium and long term responses to inheritance tax

Theoretical framework

Optimal inheritance tax rate

Appendix

	Empirical approach		Optimal inheritance tax rate	Appendix
00 00	••••••••••••••••••••••••••••••••••••••			
Timing responses due to the notch				

- · Reform of the preferential tax scheme should induce :
 - Re-timing responses at age 70
 - · Shifting among asset portfolio
 - Wealth dis-accumulation
- · Source of variations and estimation methods :
 - Bunching estimation for timing responses
 - Difference in taxation at age 70 (for life insurance policies taken out after 11/20/1991)
 - Diff-in-diff estimation for aggregate real and shifting responses
 - Comparison of life insurance premiums paid before or after age 70 for life insurance policy taken out before or after 11/20/1991

Appendix

Timing responses due to the notch

The Preferential tax scheme for life insurance

TABLE 4: Life insurance taxation at death since 1998

	Insurance premiums paid Before aged 70 After aged 70		
Life insurance taken out			
Before 11/20/1991	Flat tax rate of 20%		
After 11/20/1991	Flat tax rate of 20%	Recalled into the inheritance tax base	

Note : Top inheritance tax rate goes up to 40% for spouses and direct descendants and 60% for collateral heirs.

Timing responses due to the notch

- Timing responses using bunching estimation
 - Increase in taxation at age 70
 - Formation of a notch around age 70
 - Identification assumption : Distribution of life insurance premiums would have been smooth if there were no jump in the tax rate at age 70
 - \Rightarrow No other factors can explain bunching at age 70

FIGURE 2: Life insurance premiums around the notch, (France 2003-2013)

Sample : Life insurance with portfolio manager (taken out after 11/20/1991)

Timing responses due to the notch

Estimating the empirical distribution

• Fit a flexible polynomial to the empirical distribution, excluding data in a range around the notch

$$\log y_a = \sum_{j=0}^{J} \beta_j \cdot (age_a)^j + \sum_{k=a_l}^{a_u} \gamma_k \cdot \mathbb{1}_{age_a=k} + \varepsilon_a$$

where log y_a is the log of life insurance premiums paid by individuals of age a, *J* is the order of polynomial, *age* is the age normalized to be equal to 0 at the cutoff, $[a_l, a_u]$ is the excluded range around the notch point, 1 is the indicator function and ε_a is the error term

Estimating the counterfactual distribution, Bunching and Holes

· Estimate of counterfactual distribution :

$$\log y_a^c = \sum_{j=0}^J \hat{\beta}_j \cdot (age_a)^j \tag{1}$$

Estimates of excess bunching and hole (missing mass) :

$$\hat{b} = \frac{\sum_{a=a_l}^{\hat{a}} \log y_a - \log y_a^c}{\log y_a^c}$$
$$\hat{m} = \frac{\sum_{a=\hat{a}}^{a_u} \log y_a^c - \log y_a}{\log y_a^c}$$

FIGURE 3: Life insurance premiums around the notch, (France 2003-2013)

FIGURE 4: Life insurance premiums around the notch, (France 2003-2013)

Sample : Standard life insurance policies (taken out after 11/20/1991)

FIGURE 5: Robustness Check : Life insurance taken out before 11/20/1991

Source : Life insurance policy from Axa, France 2003-2013

Timing responses due to the notch

Estimating timing responses

$$\log y_a = \sum_{j=0}^{J} \beta_j \cdot (age_a)^j + \gamma_1 \cdot \mathbb{1}_{a_j \leq age_a \leq \bar{a}} + \gamma_2 \cdot \mathbb{1}_{\bar{a} < age_a \leq a_v} + \varepsilon_a$$
(2)

- 1_{a_i≤age_a≤ā} and 1_{ā<age_a≤a_u} are respectively age dummies for being in the excluding range below or above the notch.
- γ_1 : short-term timing responses
- γ₂ medium-term timing responses

Timing responses due to the notch

TABLE 5: Absolute value of timing responses and reduced-form elasticity estimates

	Timing responses		Reduced-	form elasticity	Horizon of
	short	medium	short	medium	timing
	term	term	term	term	responses
Standard	0.15***	0.03***	0.51***	0.11***	2 years
insured	(0.008)	(0.004)	(0.028)	(0.013)	
Wealthy insured	0.31*** (0.023)	0.03*** (0.008)	1.07*** (0.081)	0.10*** (0.029)	4 years

* p < 0.1, ** p < 0.05, *** p < 0.01. Bootstrap standard errors in parentheses. The reduced-form elasticities are computed by dividing timing responses by log(1 - 0.4) - log(1 - 0.2) and the standard errors associated are derived by the delta method.

TABLE 6: Absolute value of timing responses and reduced-form elasticity estimates for insured with life insurance between $100,000 \in$ and $700,000 \in$

	Timing responses		Reduced-	Reduced-form elasticity	
	short	medium	short	medium	timing
	term	term	term	term	responses
Standard	0.36***	0.035***	1.24***	0.12***	4 years
insured	(0.03)	(0.012)	(0.10)	(0.041)	
Wealthy	0.37***	0.049***	1.29***	0.17***	4 years
insured	(0.046)	(0.015)	(0.16)	(0.052)	

* p < 0.1, ** p < 0.05, *** p < 0.01. Bootstrap standard errors in parentheses. The reduced-form elasticities are computed by dividing timing responses by log(1 - 0.4) - log(1 - 0.2) and the standard errors associated are derived by the delta method.

Timing responses due to the notch

Results on timing response estimation :

- · Strong short-term inter-temporal shifting elasticity
 - · varying with level of wealth
- · Moderate medium-term inter-temporal shifting elasticity around 0.1
- Difference among short-term elasticities is explained by the difference in time horizon

	Empirical approach		Optimal inheritance tax rate	Appendix
00 00	00000000000000000000000000000000000000			
Medium and long term responses to inheritance tax				

- · Life insurance taxation can also generate :
 - · Shifting among asset portfolio
 - Wealth dis-accumulation
- Empirical Strategy : Difference-in-differences
 - · Life insurance tax change implemented in 1992 is not retroactive
 - No tax change at age 70 for life insurance policy taken out before 11/20/1991 (control group)
 - Tax change at age 70 for life insurance policy taken out after 11/20/1991 (treated group)
- Comparability issue
 - · Life insurance premiums observed only during 2003-2013
 - Sample restricted to life insurance policies taken out \pm 2 years around 11/20/1991

Appendix

Medium and long term responses to inheritance tax

The Preferential tax scheme for life insurance

TABLE 7: Life insurance taxation at death since 1998

	Insurance premiums paid Before aged 70 After aged 70		
Life insurance taken out			
Before 11/20/1991	Flat tax rate of 20%		
After 11/20/1991	Flat tax rate of 20% Recalled the inherit tax bas		

Note : Top inheritance tax rate goes up to 40% for spouses and direct descendants and 60% for collateral heirs.

Potential selection problem :

- · Sample includes only life insurance policies :
 - a) not terminated before 2003
 - b) not terminated during lifetime between 2003 and 2013
 - Reform should not play on a) and b) because of the existence of a supplemental tax exemption for life insurance
- individuals could anticipate the reform by subscribing life insurance policy just before its implementation
 - the 1992 law was applied to life insurance policies taken out after 20/11/1991, i.e 40 days before the law was voted

Selection bias

FIGURE 6: Life insurance premiums by age of the owners, France 2003-2013

FIGURE 7: Life insurance premiums by age of the owners, France 2003-2013

Medium and long term responses to inheritance tax

Diff-in-Diff estimation

 $\log y_{iat} = \delta \cdot \text{Diff}_{ia} + \alpha_i + \gamma_a + \nu_t + \varepsilon_{iat}$ (3) $\log y_{iat} = \delta_1 \cdot \text{Diff1}_{ia} + \delta_2 \cdot \text{Diff2}_{ia} + \alpha_i + \gamma_a + \nu_t + \varepsilon_{iat}$ (4)

- log y_{iat} = log of life insurance premiums paid by individual i of age a at time t
- α_i , γ_a and ν_t are respectively individual, age and time fixed effects
- Diff; a : being in the treatment group and aged more than 70 years old
- Diff1_{ia} being in the treatment group and aged between 70 and 75 years old
- Diff2_{ia} : being in the treatment group and aged between 75 and 80 years old

	Empirical approach		Optimal inheritance tax rate	Appendix
00 00	00000000000000000000000000000000000000			
Medium and long term respo	nses to inheritance tax			

 TABLE 8: Panel estimates of the effect of inheritance tax change on life insurance

 premiums in France, 2003-2013

	(1)	(2)	(3)
	Treatment : Aged 70 or more		
	Average effect	Between 70 and 75	After 75
Reduced-form estimate	-0.073***	-0.068***	-0.100***
	(0.020)	(0.020)	(0.024)
Elasticity $\frac{d \log y}{d \log 1 - \tau}$ estimate	0.254***	0.236***	0.346***
	(0.069)	(0.069)	(0.084)
Number of observations	673128	673128	673128
Number of individuals	25858	25858	25858

* p < 0.1, ** p < 0.05, *** p < 0.01. The standard errors in parentheses are clustered at the individual level. The reduced-form elasticities are computed by dividing timing responses by log(1 - 0.4) - log(1 - 0.2) and the standard errors associated are derived by the delta method Medium and long term responses to inheritance tax

Robustness checks

- Varying the window width for sample selection :
 Probustness 1
- · Falsification experiments :
 - Both groups not affected by the tax change :
 Probustness 2
 - · Both groups affected by the tax change :
 - Robustness 3

Findings

- · Aggregate elasticity of real and shifting responses
 - Medium-term elasticity = 0.35
 - Long-term elasticity = 0.24
- · Implications on wealth accumulation and bequest motives :
 - Increasing effect of inheritance taxation with respect to age : Evidence that individuals fail to plan for the disposition of an estate well in advance
 - Timing responses less important than aggregate shifting and real responses
 Evidence of "Wealth loving" motive

Outline

Macro-series and Data

Macro-series Data

Empirical approach

Timing responses due to the notch Medium and long term responses to inheritance tax

Theoretical framework

Optimal inheritance tax rate

Appendix

Novelty of the model

- Introduction of two assets in an inter-temporal framework
- Life insurance does not yield utility during lifetime but tangible assets do
 - · Housing or Business ownership may yield power or social status.
 - Utility of wealth per se (secondary residence next to the sea, family house)
- Trade-off between life insurance and tangible assets
 - · Life insurance benefits from preferential inheritance taxation
 - · tangible assets yield utility during lifetime and at death

Set up

- · Three periods
 - · Period 1 : individuals aged between 20 and 70 years old
 - · Period 2 : individuals aged between 70 and 80 years old
 - · Period 3 : individuals die at age 80 and leave a bequest
- For each period during lifetime, individuals choose between
 - Consuming C_t
 - Accumulating life insurance X_t for bequest purpose
 - · Saving to increase their tangible asset holdings

• During lifetime, individuals derive utility from consumption and tangible asset holdings but not from life insurance accumulation

$$U(C_t, W_t) = u(C_t) + v(W_t) = \frac{c_t^{1-s_c}}{1-s_c} + \frac{W_t^{1-s_w}}{1-s_w}$$
(5)

• At death, individuals derive utility from bequeathing total life insurance accumulation and end-of-life wealth

$$\phi(B) = \phi(W_2, X_1, X_2) = \frac{\left(R_x^2(1-\tau_1)X_1 + R_x(1-\tau_2)X_2 + R_w \cdot (1-\tau_w) \cdot W_2\right)^{1-s_b}}{1-s_b}$$
(6)

Decision Problem

$$V(W_{t}, C_{t}, X_{t}) = \max(\sum_{t=1}^{2} \beta^{t-1} \cdot U(C_{t}, W_{t}) + \beta^{2} \phi(B))$$
subject to
$$W_{t} = R_{w} \cdot W_{t-1} + Y_{t} - C_{t} - X_{t}$$

$$B = R_{x}^{2}(1 - \tau_{1})X_{1} + R_{x}(1 - \tau_{2})X_{2} + R_{w} \cdot (1 - \tau_{w}) \cdot W_{2}$$

$$R_{x} > R_{w}, \tau_{1} < \tau_{2} < \tau_{w}$$
(7)

Impact of the reform of the preferential tax scheme?

When τ_2 increase then X_2 decreases and is substituted by

- C₁ and C₂ (real responses)
- W_1 and W_2 (Shifting among asset portfolio responses)
- X₁ (timing responses)

Retiming responses

$$\frac{\partial v}{\partial W_1} = \beta^2 [R_x^2(1-\tau_1) - R_x R_w(1-\tau_2)] \frac{\partial \phi}{\partial B}$$

Shifting among asset portfolio

$$\frac{\partial \mathbf{v}}{\partial W_2} = \beta \left(R_x (1 - \tau_2) - R_w (1 - \tau_w) \right) \frac{\partial \phi}{\partial B}$$

Increase of the consumption

$$\frac{\partial u}{\partial C_2} = \beta R_x (1 - \tau_2) \frac{\partial \phi}{\partial B}$$

Outline

Macro-series and Data

Macro-series Data

Empirical approach

Timing responses due to the notch Medium and long term responses to inheritance tax

Theoretical framework

Optimal inheritance tax rate

Appendix

Policy implications

- Optimal inheritance tax design
 - Tax-neutrality across assets
 - Broadening the tax base
- Life insurance reform
 - · Improve partially the inheritance tax design
 - · But introduce new avoidance opportunities through timing responses
- · Optimal inheritance tax in absence of the preferential tax scheme?

Macro-series and Data OO OO	Empirical approach 0000000000000 000000000	Optimal inheritance tax rate	

- The government want to maximise social welfare of a particular group
- Sufficient statistic formula for optimal inheritance tax rate (Piketty and Saez (2013))

$$\tau_{B} = \frac{1 - \left[1 - \frac{e_{L}\tau_{L}}{1 - \tau_{L}}\right] \left[\frac{\bar{b}^{\text{received}}}{\bar{y}_{L}}(1 + \hat{e}_{B}) + \frac{\nu}{R/G}\frac{\bar{b}^{\text{left}}}{\bar{y}_{L}}\right]}{1 + \hat{e}_{B} - \left[1 - \frac{e_{L}\tau_{L}}{1 - \tau_{L}}\frac{\bar{b}^{\text{received}}}{\bar{y}_{L}}(1 + \hat{e}_{B})\right]}$$
(8)

- $b^{\text{left}}, \bar{b}^{\text{received}}$ and \bar{y}_L are respectively the ratios of bequest left, bequest received and earnings of the sub-group targeted by the government to population averages.
- *e_B* and *e_L* are respectively the elasticities of aggregate taxable bequests and taxable income.
- $R/G = e^{(r-g)H}$ with r the return on capital and g the growth rate.
- ν is the parameter for pure bequest motive.

TABLE VII – OPTIMAL INHERITANCE TAX RATE CALIBRATIONS

	Optimal Tax Rate (by Percentile of Bequest Received)									
			France					U.S.		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Fraction of the Bequest Elastic	city due	to Real I	Response	s		-			-	
-	100%	75%	50%	25%	0%	100%	75%	50%	25%	0%
Real Elasticity										
-	0,25	0,19	$0,\!13$	0,06	0,00	0,25	0,19	$0,\!13$	0,06	0,00
1. Optimal Linear Tax Rate by	y Percen	tile of Be	quest Re	ceived						
Meritocratic Rawlsian Case : l	P0-50									
	61%	64%	67%	71%	76%	56%	59%	63%	66%	70%
Median Voter Case : P40-60	FOR	0007	0.007	H 007	₩ 407	F 007	5007	0007	0.007	H 1 07
Pro-Capitalist Case : P90-95	59%	63%	66%	70%	74%	56%	59%	63%	66%	71%
rro-Capitalist Case . r 90-95	-340%	-328%	-315%	-300%	-284%	-93%	-82%	-70%	-57%	-43%
2. Optimal Top Tax Rate Abo	ve Posit	ive Exem	ption An	nount for	Zero Re	ceivers (bottom	50%)		
Above 500,000	61%	66%	72%	79%	88%	55%	58%	62%	67%	73%
Above 1,000,000	61%	67%	74%	82%	92%	54%	58%	62%	67%	73%

	Empirical approach	Optimal inheritance tax rate	Appendix
00 00	000000000000 00000000		

- Optimal tax rate in Meritocratic Rawlsian case and Median Voter case :
 - in France : 60%-70%
 - in the USA : 55%-65%
 - When elasticity is due entirely to real responses : $\tau_B = 60\%$
- Bottom 50% receivers and Median voter
 - · leave substantially less wealth than average to their heirs
 - have earnings close to average
- Optimal policy is to increase inheritance tax rate and reduce labor tax rate
- In the Pro-capistalistic case, inheritance should be subsidized

Conclusion

- · First comprehensive study of behavioral responses to inheritance tax
- We have benefited from :
 - · First-time access to longitudinal data set of life insurance policies
 - Compelling variation created by the French preferential tax scheme for life insurance transmitted at death
- · Estimation of two kinds of behavioral responses
 - Timing responses using bunching estimation : Strong short-term timing responses reflect moderate inter-temporal shifting in the medium term
 - Aggregate real and shifting among asset portfolio responses : Medium-term elasticity = 0.35 Long-term elasticity = 0.24

Conclusion

- · Motivations behind bequest motives :
 - Increasing effect of inheritance taxation with respect to age : Evidence that individuals fail to plan for the disposition of an estate well in advance
 - Timing responses less important than aggregate shifting and real responses
 Evidence of "Wealth loving" motive
- · Policy implications :
 - Optimal tax rate might be as large as 60%–70% in the median voter or meritocatric rawlsian case
 - Inheritance should be subsidized in the Pro-capitalistic case

Outline

Macro-series and Data

Macro-series Data

Empirical approach

Timing responses due to the notch Medium and long term responses to inheritance tax

Theoretical framework

Optimal inheritance tax rate

Appendix

00		
00		

mpirical approach

Theoretical framework

Optimal inheritance tax rate

Appendix

BACK UP SLIDES

Appendix

The Preferential tax scheme for life insurance

TABLE 9: Life insurance taxation at death since 1998

	Insurance pro Before aged 70	
Life insurance taken out		
Before 11/20/1991	Flat tax ra	te of 20%
After 11/20/1991	Flat tax rate of 20%	Recalled into the inheritance tax base

Note : Top inheritance tax rate goes up to 40% for spouses and direct descendants and 60% for collateral heirs.

Return bunching PReturn Diff-in-Diff

Panel A : Life insuran	ce policies take	en out after $20/11$	/1991
	All life insurance owners	Wealthy insured	Standard insured
Age	68.5 (5.88)	69.5 (6.04)	68.4 (5.85)
Life insurance policy (in '000s of 20	013 euros)		
mean	60.2	192.7	41.7
p50	14.5	54.7	11.5
p99	611.2	2,002.5	419.1
P99-100 Life insurance premiums (in '000s o	1,757.7 of 2013 euros)	6,473.7	829.8
mean p99	1.2 20.1	$3.0 \\ 41.8$	$0.9 \\ 17.8$
Number of observations	7,826,454	958,265	6,868,189
Number of individuals	347,253	41,074	306,179
Average number of spells	22.5	23.3	22.4
Duration of the contract (in years)	12.4	13.5	12.3

Panel A : Li	ife insurance	policies t	aken ou	t after 2	0/11	/1991
--------------	---------------	------------	---------	-----------	------	-------

	All	aken out	
		before 20/11/1991	after 20/11/199
Age	70.2	70.1	70.2
	(6.25)	(6.24)	(6.27)
Life insurance policy (in '000s of 20	13 euros)		
mean	89.5	73.5	106.4
p50	26.3	23.5	29.5
p99	822.3	719.1	967.7
P99-100	2,970.7	1,987.6	3,978.3
Life insurance premiums (in '000s o		/	
mean	0.6	0.6	0.6
p99	2.9	2.5	3.2
Number of observations	747,307	383,153	$364,\!154$
Number of individuals	31,073	15,514	15,559
Average number of spells	24.1	24.7	23.4
Duration of the contract (in years)	21.9	23.0	20.8

Panel B. Life insurance policies taken out between	n 20/11/1989 and 20/11/1993
--	-----------------------------

00		
00		

mpirical approach

Theoretical framework

Optimal inheritance tax rate

Appendix

Estimating the empirical distribution

• Fit a flexible polynomial to the empirical distribution, excluding data in a range around the notch

$$\log y_a = \sum_{j=0}^J \beta_j \cdot (a)^j + \sum_{k=a_l}^{a_u} \gamma_k \cdot \mathbb{1}_{a=k} + \varepsilon_a$$

where log y_a is the log of life insurance premiums paid by individuals of age a, *J* is the order of polynomial, *a* is the age normalized to be equal to 0 at the cutoff, $[a_l, a_u]$ is the excluded range around the notch point, 1 is the indicator function and ε_a is the error term Empirical approach

Theoretical framework

Appendix

Estimating the counterfactual distribution, Bunching and Holes

· Estimate of counterfactual distribution :

$$\log y_a^c = \sum_{j=0}^J \hat{\beta}_j \cdot (a)^j \tag{9}$$

Estimates of excess bunching and hole (missing mass) :

$$\hat{b} = \frac{\sum_{a=a_l}^{\hat{a}} \log y_a - \log y_a^c}{\log y_a^c}$$
$$\hat{m} = \frac{\sum_{a=\hat{a}}^{a_u} \log y_a^c - \log y_a}{\log y_a^c}$$

FIGURE 8: Falsification experiment with both groups affected by the tax change

FIGURE 9: Falsification experiment with both groups affected by the tax change

FIGURE 10: Falsification experiment with both groups unaffected by the tax change

FIGURE 11: Falsification experiment with both groups unaffected by the tax change

FIGURE 12: Other distributions from life insurance taken out before 11/20/1991

FIGURE 13: Number of life insurance policies by year of subscription

FIGURE 14: Number of life insurance policies by date of subscription

cro-series and Data	Empirical approach		rk Optimal inheritance tax rat	e Apper
	TABLE 10: N	Varrowing the w	indow "±1 year"	
		(1)	(2)	(3)
		Treatr	ment : Aged 70 or more	9
	-	Average effect	Between 70 and 75	After 75
(Policy taken	out between 20/	/11/1990 and 20)/11/1992)	
Reduced-form	i estimate	-0.059** (0.030)	-0.048 (0.030)	-0.115*** (0.037)
Elasticity $\frac{d \log q}{d \log q}$	$\frac{\partial y}{\partial -\tau}$ estimate	0.204** (0.103)	0.168 (0.103)	0.401*** (0.130)
Number of ob Number of inc		286425 10864	286425 10864	286425 10864

* p < 0.1, ** p < 0.05, *** p < 0.01. The standard errors in parentheses are clustered at the individual level.

o-series and Data	Empirical approach 0000000000000 000000000	Theoretical framewor	rk Optimal inheritance tax rat	е Арреі
	TABLE 11. W	lidening the wir	ndow "±5 γears"	
	TABLE TT. V	(1)	(2)	(3)
		Treatr	ment : Aged 70 or more	e
	-	Average effect	Between 70 and 75	After 75
(Policy taken	out between 20/	11/1986 and 20	/11/1996)	
Reduced-for	m estimate	-0.061*** (0.011)	-0.059*** (0.011)	-0.072*** (0.014)
Elasticity $\frac{d}{d \log d}$	$\frac{\log y}{\log 1-\tau}$ estimate	0.210*** (0.039)	0.203*** (0.039)	0.249*** (0.049)
Number of ol Number of in		2269600 87286	2269600 87286	2269600 87286

the individual level.

Return

	Empirical approach		Coptimal inheritance tax rate	e Appe		
	Pobuotago C	hook 2 · Poth are	una unaffactad by the	roform		
TABLE 12.	Robusiness C	neck 2 . Both gro	oups unaffected by the	reiorm		
		(1)	(2)	(3)		
		Treatment : Aged 70 or more				
		Average effect	Between 70 and 75	After 75		
(Policy taken	out between 20	0/11/1987 and 20	/11/1991)			
Reduced-form estimate		-0.035*	-0.037*	-0.025		
		(0.019)	(0.019)	(0.024)		
Elasticity $\frac{d \log y}{d \log 1 - \tau}$ estimate		0.122*	0.128*	0.087		
		(0.066)	(0.065)	(0.084)		
Number of observations		586490	586490	586490		
Number of individuals		23448	23448	23448		

p < 0.1, ^ p < 0.05, the individual level. Return М

	ical approach 0000000000 000000	Theoretical framewor	k Optimal inheritance tax ra	te Apper		
TABLE 13: Ro	bustness Cł	neck 3 : Both g	roups affected by the	reform		
		(1)	(2)	(3)		
		Treatment : Aged 70 or more				
	A	verage effect	Between 70 and 75	After 75		
(Policy taken out be	etween 20/1	1/1991 and 20)/11/1995)			
Reduced-form estir	nate	0.027 (0.018)	0.024 (0.018)	0.042* (0.022)		
Elasticity $\frac{d \log y}{d \log 1 - \tau}$ estimate		-0.093 (0.062)	-0.083 (0.062)	-0.147* (0.077)		
Number of observations Number of individuals		1113739 42325	1113739 42325	1113739 42325		

* p < 0.1, ** p < 0.05, *** p < 0.01. The standard errors in parentheses are clustered at the individual level. Return