Behavioral responses to inheritance tax: Evidence from notches in France

Jonathan Goupille and Arturo Infante

12 février 2015
Motivation

Wealth is strongly concentrated
Wealth can be transmitted from generation to generation

Estate tax : Trade-off between equity and efficiency

Equity :
• Limit the perpetuation of inequality
• Limit corporate power on the political process

Efficiency cost due to behavioral responses :
• Real responses harmful to the macroeconomic success of an economy (incentives for entrepreneurship, savings, labor supply)
• Shifting responses reduce efficiency of taxation to curb wealth inequality
Why do behavioral responses matter?

• Behavioral responses . . .
 • Increase the efficiency cost of taxation
 • Limit the redistributive ability of governments

• Nature of behavioral responses yields different policy implications: Saez et al. (2012)
 • Real responses limit optimal top tax rate
 • Shifting responses are a symptom of a poorly design tax system

• Very scarce empirical research on the effect of inheritance taxation on wealth accumulation
 • Lack of good micro data
 • Issue about how to identify the causal effect of taxation on wealth accumulation
This paper

• **Research Question**: Estimation and implications of behavioral responses to inheritance tax

• Use the Preferential Tax Scheme for life insurance in France
 • Generate large discontinuities in tax liability depending on:
 • Life insurance policy start date (before and after November 20, 1991)
 • Age at which the premiums was paid (before or after 70 years old)

• Estimate different behavioral responses to estate taxation over time
 • Timing responses using bunching estimation
 • Aggregate of real and shifting responses using diff-in-diff method
The Preferential tax scheme for life insurance

• Introduced in 1965; entirely exempt life insurance from inheritance tax

• Reform of 1992 not retroactive
 • For life insurance policy taken out after 11/20/1991: recall life insurance premiums paid after age 70 in the inheritance tax base

• Reform of 1998
 • All life insurance premiums not recalled in the inheritance tax base are taxed at a flat rate of 20% after an exemption of 152,500 € by inheritor

• Generate large discontinuities in tax liability depending on:
 • Life insurance policy start date (before and after November 20, 1991)
 • Age at which the premiums was paid (before or after 70 years old)
The Preferential tax scheme for life insurance

Table 1: Life insurance taxation at death since 1998

<table>
<thead>
<tr>
<th>Life insurance taken out</th>
<th>Insurance premiums paid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before 11/20/1991</td>
<td>Flat tax rate of 20%</td>
</tr>
<tr>
<td>After 11/20/1991</td>
<td>Flat tax rate of 20%</td>
</tr>
<tr>
<td></td>
<td>Recalled into the inheritance tax base</td>
</tr>
</tbody>
</table>

Note: Top inheritance tax rate goes up to 40% for spouses and direct descendants and 60% for collateral heirs.
Figure 1: Behavioral responses to the reform of the preferential tax scheme
• Reform of the preferential tax scheme should induce:
 • Re-timing responses at age 70
 • Shifting among asset portfolio
 • Wealth dis-accumulation

• Source of variations and estimation methods:
 • Bunching estimation for timing responses
 • Difference in taxation at age 70
 (for life insurance policies taken out after 11/20/1991)
 • Diff-in-diff estimation for aggregate real and shifting responses
 • Comparison of life insurance premiums paid before or after age 70 for life insurance policy taken out before or after 11/20/1991
Contributions:

1. Estimate different behavioral responses to estate taxation over time
 - Timing responses in short and medium run:
 - Important short-term timing responses reflect moderate inter-temporal shifting in the medium term
 - Aggregate elasticity of real and shifting responses
 - Medium-term elasticity = 0.35
 - Long-term elasticity = 0.24

2. Implications on wealth accumulation and bequest motives:
 - Evidence that individuals fail to plan for the disposition of an estate well in advance
 - Evidence of “Wealth loving” motive

3. Develop an inter-temporal model of transfer taxation to rationalize findings 1 to 2

4. Derive Optimal inheritance tax rate from estimated elasticity
Outline

Macro-series and Data
 Macro-series
 Data

Empirical approach
 Timing responses due to the notch
 Medium and long term responses to inheritance tax

Theoretical framework

Optimal inheritance tax rate

Appendix
TABLE 2: Life insurance and wealth in France, 1984-2013

<table>
<thead>
<tr>
<th>Year</th>
<th>Private Wealth (in % of national income)</th>
<th>Wealth composition (in % of private wealth)</th>
<th>Life ins. assets (in % of financial assets)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tangible assets</td>
<td>Liabilities</td>
</tr>
<tr>
<td>1985</td>
<td>304%</td>
<td>74%</td>
<td>-9%</td>
</tr>
<tr>
<td>1995</td>
<td>330%</td>
<td>67%</td>
<td>-14%</td>
</tr>
<tr>
<td>2005</td>
<td>466%</td>
<td>70%</td>
<td>-11%</td>
</tr>
<tr>
<td>2013</td>
<td>597%</td>
<td>73%</td>
<td>-13%</td>
</tr>
</tbody>
</table>

Sources: National Accounts from INSEE (France’s National Institute of Statistics)
Table 3: Life insurance transmitted at death, 1984-2006

<table>
<thead>
<tr>
<th>Year</th>
<th>Wealth at death</th>
<th>Wealth of the living</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Bequest flow</td>
<td>(2) Life insurance</td>
</tr>
<tr>
<td>1984</td>
<td>33,1</td>
<td>3,4</td>
</tr>
<tr>
<td>1987</td>
<td>35,4</td>
<td>4,5</td>
</tr>
<tr>
<td>1994</td>
<td>43,2</td>
<td>7,4</td>
</tr>
<tr>
<td>2000</td>
<td>59,2</td>
<td>12,5</td>
</tr>
<tr>
<td>2006</td>
<td>86,2</td>
<td>20,2</td>
</tr>
</tbody>
</table>

Sources: FFSA (French life insurance association), MTG surveys from DGFIP and National Accounts from INSEE.

All the aggregate flows are in billion 2013 euros.
Data

- French longitudinal data set from Axa (2003-2013)
 - Detailed information about life insurance policy

- Two types of insured
 - Insured taken out a standard life insurance policy (classical insured)
 - Wealthy insured that entrust Axa the management of their wealth (wealthy insured)
Data

• Three motives for life insurance
 1. Cash reserve
 2. Supplemental retirement benefit
 3. Transmission at death
 • Only 3 is affected by the preferential scheme

• Conditions of inclusion in the data set
 • Aged between 60 and 80 years old
 • Having not terminated the life policy during lifetime

• Huge database:
 350 000 individuals × 23 quarterly years = 8 millions of observations
Outline

Macro-series and Data
 Macro-series
 Data

Empirical approach
 Timing responses due to the notch
 Medium and long term responses to inheritance tax

Theoretical framework

Optimal inheritance tax rate

Appendix
• Reform of the preferential tax scheme should induce:

 • **Re-timing responses at age 70**
 • Shifting among asset portfolio
 • Wealth dis-accumulation

• Source of variations and estimation methods:

 • **Bunching estimation for timing responses**
 • Difference in taxation at age 70
 for life insurance policies taken out after 11/20/1991

 • Diff-in-diff estimation for aggregate real and shifting responses
 • Comparison of life insurance premiums paid before or after age 70 for life insurance policy taken out before or after 11/20/1991
The Preferential tax scheme for life insurance

Table 4: Life insurance taxation at death since 1998

<table>
<thead>
<tr>
<th>Life insurance taken out</th>
<th>Insurance premiums paid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before aged 70</td>
</tr>
<tr>
<td>Before 11/20/1991</td>
<td>Flat tax rate of 20%</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>After 11/20/1991</td>
<td>Flat tax rate of 20%</td>
</tr>
</tbody>
</table>

Note: Top inheritance tax rate goes up to 40% for spouses and direct descendants and 60% for collateral heirs.
Timing responses due to the notch

- Timing responses using bunching estimation
 - Increase in taxation at age 70
 - Formation of a notch around age 70
 - Identification assumption:
 Distribution of life insurance premiums would have been smooth if there were no jump in the tax rate at age 70
 ⇒ No other factors can explain bunching at age 70
FIGURE 2: Life insurance premiums around the notch, (France 2003-2013)

Sample: Life insurance with portfolio manager (taken out after 11/20/1991)
Estimating the empirical distribution

- Fit a flexible polynomial to the empirical distribution, excluding data in a range around the notch

\[
\log y_a = \sum_{j=0}^{J} \beta_j \cdot (age_a)^j + \sum_{k=a_l}^{a_u} \gamma_k \cdot 1_{age_a=k} + \varepsilon_a
\]

where \(\log y_a \) is the log of life insurance premiums paid by individuals of age \(a \), \(J \) is the order of polynomial, \(age \) is the age normalized to be equal to 0 at the cutoff, \([a_l, a_u]\) is the excluded range around the notch point, \(1 \) is the indicator function and \(\varepsilon_a \) is the error term.
Estimating the counterfactual distribution, Bunching and Holes

• Estimate of counterfactual distribution :

\[\log y^c_a = \sum_{j=0}^{J} \hat{\beta}_j \cdot (age_a)^j \]

(1)

• Estimates of excess bunching and hole (missing mass) :

\[\hat{b} = \frac{\sum_{a=a_l}^{a_u} \log y_a - \log y^c_a}{\log y^c_{\bar{a}}} \]

\[\hat{m} = \frac{\sum_{a=\bar{a}}^{a_u} \log y^c_a - \log y_a}{\log y^c_{\bar{a}}} \]
Figure 3: Life insurance premiums around the notch, (France 2003-2013)

- **Actual Distribution**
- **Counterfactual Distribution**

- $b = 0.82 (0.069)$
- $m = 1.23 (0.338)$
- $m - b = 0.42 (0.365)$
Timing responses due to the notch

Figure 4: Life insurance premiums around the notch, (France 2003-2013)

Sample: Standard life insurance policies (taken out after 11/20/1991)
FIGURE 5: Robustness Check: Life insurance taken out before 11/20/1991

Source: Life insurance policy from Axa, France 2003-2013
Estimating timing responses

\[
\log y_a = \sum_{j=0}^{J} \beta_j \cdot (\text{age}_a)^j + \gamma_1 \cdot 1_{a_l \leq \text{age}_a \leq \bar{a}} + \gamma_2 \cdot 1_{\bar{a} < \text{age}_a \leq a_u} + \varepsilon_a \quad (2)
\]

- \(1_{a_l \leq \text{age}_a \leq \bar{a}}\) and \(1_{\bar{a} < \text{age}_a \leq a_u}\) are respectively age dummies for being in the excluding range below or above the notch.
- \(\gamma_1\) : short-term timing responses
- \(\gamma_2\) medium-term timing responses
Table 5: Absolute value of timing responses and reduced-form elasticity estimates

<table>
<thead>
<tr>
<th></th>
<th>Timing responses</th>
<th>Reduced-form elasticity</th>
<th>Horizon of timing responses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>short term</td>
<td>medium term</td>
<td>short term</td>
</tr>
<tr>
<td>Standard insured</td>
<td>0.15*** (0.008)</td>
<td>0.03*** (0.004)</td>
<td>0.51*** (0.028)</td>
</tr>
<tr>
<td>Wealthy insured</td>
<td>0.31*** (0.023)</td>
<td>0.03*** (0.008)</td>
<td>1.07*** (0.081)</td>
</tr>
</tbody>
</table>

* p < 0.1, ** p < 0.05, *** p < 0.01. Bootstrap standard errors in parentheses. The reduced-form elasticities are computed by dividing timing responses by \(\log(1 - 0.4) - \log(1 - 0.2) \) and the standard errors associated are derived by the delta method.
TABLE 6: Absolute value of timing responses and reduced-form elasticity estimates for insured with life insurance between 100,000€ and 700,000€

<table>
<thead>
<tr>
<th></th>
<th>Timing responses</th>
<th>Reduced-form elasticity</th>
<th>Horizon of timing responses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>short term</td>
<td>medium term</td>
<td>short term</td>
</tr>
<tr>
<td>Standard insured</td>
<td>0.36***</td>
<td>0.035***</td>
<td>1.24***</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.012)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>Wealthy insured</td>
<td>0.37***</td>
<td>0.049***</td>
<td>1.29***</td>
</tr>
<tr>
<td></td>
<td>(0.046)</td>
<td>(0.015)</td>
<td>(0.16)</td>
</tr>
</tbody>
</table>

* p < 0.1, ** p < 0.05, *** p < 0.01. Bootstrap standard errors in parentheses. The reduced-form elasticities are computed by dividing timing responses by $\log(1 - 0.4) - \log(1 - 0.2)$ and the standard errors associated are derived by the delta method.
Results on timing response estimation:

- Strong short-term inter-temporal shifting elasticity
 - varying with level of wealth

- Moderate medium-term inter-temporal shifting elasticity around 0.1

- Difference among short-term elasticities is explained by the difference in time horizon
Life insurance taxation can also generate:
- Shifting among asset portfolio
- Wealth dis-accumulation

Empirical Strategy: Difference-in-differences
- Life insurance tax change implemented in 1992 is not retroactive
- No tax change at age 70 for life insurance policy taken out before 11/20/1991 (control group)
- Tax change at age 70 for life insurance policy taken out after 11/20/1991 (treated group)

Comparability issue
- Life insurance premiums observed only during 2003-2013
- Sample restricted to life insurance policies taken out ± 2 years around 11/20/1991
The Preferential tax scheme for life insurance

TABLE 7: Life insurance taxation at death since 1998

<table>
<thead>
<tr>
<th>Life insurance taken out</th>
<th>Insurance premiums paid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before aged 70</td>
</tr>
<tr>
<td>Before 11/20/1991</td>
<td>Flat tax rate of 20%</td>
</tr>
<tr>
<td>After 11/20/1991</td>
<td>Flat tax rate of 20%</td>
</tr>
</tbody>
</table>

Note: Top inheritance tax rate goes up to 40% for spouses and direct descendants and 60% for collateral heirs.
Potential selection problem:

- Sample includes only life insurance policies:
 a) not terminated before 2003
 b) not terminated during lifetime between 2003 and 2013

- Reform should not play on a) and b) because of the existence of a supplemental tax exemption for life insurance

- Individuals could anticipate the reform by subscribing life insurance policy just before its implementation
 - the 1992 law was applied to life insurance policies taken out after 20/11/1991, i.e. 40 days before the law was voted

Selection bias
Figure 6: Life insurance premiums by age of the owners, France 2003-2013

![Life insurance premiums by age of the owners, France 2003-2013](image)
FIGURE 7: Life insurance premiums by age of the owners, France 2003-2013
Diff-in-Diff estimation

\begin{align}
\log y_{iat} &= \delta \cdot \text{Diff}_{ia} + \alpha_i + \gamma_a + \nu_t + \varepsilon_{iat} \\
\log y_{iat} &= \delta_1 \cdot \text{Diff}_{1ia} + \delta_2 \cdot \text{Diff}_{2ia} + \alpha_i + \gamma_a + \nu_t + \varepsilon_{iat}
\end{align}

• $\log y_{iat}$ = log of life insurance premiums paid by individual i of age a at time t
• α_i, γ_a and ν_t are respectively individual, age and time fixed effects
• Diff_{ia} : being in the treatment group and aged more than 70 years old
• Diff_{1ia} : being in the treatment group and aged between 70 and 75 years old
• Diff_{2ia} : being in the treatment group and aged between 75 and 80 years old
TABLE 8: Panel estimates of the effect of inheritance tax change on life insurance premiums in France, 2003-2013

<table>
<thead>
<tr>
<th>Treatment: Aged 70 or more</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average effect</td>
<td>Reduced-form estimate</td>
<td>Elasticity $\frac{d \log y}{d \log (1 - \tau)}$ estimate</td>
<td>Number of observations</td>
</tr>
<tr>
<td></td>
<td>-0.073***</td>
<td>0.254***</td>
<td>673128</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.069)</td>
<td>25858</td>
</tr>
<tr>
<td>Between 70 and 75</td>
<td>-0.068***</td>
<td>0.236***</td>
<td>673128</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.069)</td>
<td>25858</td>
</tr>
<tr>
<td>After 75</td>
<td>-0.100***</td>
<td>0.346***</td>
<td>673128</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.084)</td>
<td>25858</td>
</tr>
</tbody>
</table>

* p < 0.1, ** p < 0.05, *** p < 0.01. The standard errors in parentheses are clustered at the individual level. The reduced-form elasticities are computed by dividing timing responses by $\log(1 - 0.4) - \log(1 - 0.2)$ and the standard errors associated are derived by the delta method.
Robustness checks

- Varying the window width for sample selection:
 - Robustness 1

- Falsification experiments:
 - Both groups not affected by the tax change:
 - Robustness 2
 - Both groups affected by the tax change:
 - Robustness 3
Findings

• Aggregate elasticity of real and shifting responses
 • Medium-term elasticity = 0.35
 • Long-term elasticity = 0.24

• Implications on wealth accumulation and bequest motives:
 • Increasing effect of inheritance taxation with respect to age:
 Evidence that individuals fail to plan for the disposition of an estate well in advance
 • Timing responses less important than aggregate shifting and real responses
 Evidence of “Wealth loving” motive
Outline

Macro-series and Data
 Macro-series
 Data

Empirical approach
 Timing responses due to the notch
 Medium and long term responses to inheritance tax

Theoretical framework

Optimal inheritance tax rate

Appendix
Novelty of the model

- Introduction of two assets in an inter-temporal framework
- Life insurance does not yield utility during lifetime but tangible assets do
 - Housing or Business ownership may yield power or social status.
 - Utility of wealth per se (secondary residence next to the sea, family house)
- Trade-off between life insurance and tangible assets
 - Life insurance benefits from preferential inheritance taxation
 - Tangible assets yield utility during lifetime and at death
Set up

• Three periods
 • Period 1: individuals aged between 20 and 70 years old
 • Period 2: individuals aged between 70 and 80 years old
 • Period 3: individuals die at age 80 and leave a bequest

• For each period during lifetime, individuals choose between
 • Consuming C_t
 • Accumulating life insurance X_t for bequest purpose
 • Saving to increase their tangible asset holdings
During lifetime, individuals derive utility from consumption and tangible asset holdings but not from life insurance accumulation

$$U(C_t, W_t) = u(C_t) + v(W_t) = \frac{c_t^{1-s_c}}{1-s_c} + \frac{W_t^{1-s_w}}{1-s_w}$$

At death, individuals derive utility from bequeathing total life insurance accumulation and end-of-life wealth

$$\phi(B) = \phi(W_2, X_1, X_2) = \frac{(R_x^2(1-\tau_1)X_1 + R_x(1-\tau_2)X_2 + R_w(1-\tau_w)W_2)^{1-s_b}}{1-s_b}$$
Decision Problem

\[
V(W_t, C_t, X_t) = \max(\sum_{t=1}^{T} \beta^{t-1} \cdot U(C_t, W_t) + \beta^2 \phi(B))
\]
subject to
\[
\begin{align*}
W_t &= R_w \cdot W_{t-1} + Y_t - C_t - X_t \\
B &= R_x^2(1 - \tau_1)X_1 + R_x(1 - \tau_2)X_2 + R_w \cdot (1 - \tau_w) \cdot W_2 \\
R_x &> R_w, \; \tau_1 < \tau_2 < \tau_w
\end{align*}
\]
Impact of the reform of the preferential tax scheme?

When τ_2 increase then X_2 decreases and is substituted by

- C_1 and C_2 (real responses)
- W_1 and W_2 (Shifting among asset portfolio responses)
- X_1 (timing responses)
• Retiming responses

\[
\frac{\partial v}{\partial W_1} = \beta^2[R_x^2(1 - \tau_1) - R_x R_w(1 - \tau_2)] \frac{\partial \phi}{\partial B}
\]

• Shifting among asset portfolio

\[
\frac{\partial v}{\partial W_2} = \beta (R_x(1 - \tau_2) - R_w(1 - \tau_w)) \frac{\partial \phi}{\partial B}
\]

• Increase of the consumption

\[
\frac{\partial u}{\partial C_2} = \beta R_x(1 - \tau_2) \frac{\partial \phi}{\partial B}
\]
Outline

Macro-series and Data
 Macro-series
 Data

Empirical approach
 Timing responses due to the notch
 Medium and long term responses to inheritance tax

Theoretical framework

Optimal inheritance tax rate

Appendix
Policy implications

• Optimal inheritance tax design
 • Tax-neutrality across assets
 • Broadening the tax base

• Life insurance reform
 • Improve partially the inheritance tax design
 • But introduce new avoidance opportunities through timing responses

• Optimal inheritance tax in absence of the preferential tax scheme?
• The government want to maximise social welfare of a particular group

• Sufficient statistic formula for optimal inheritance tax rate (Piketty and Saez (2013))

\[
\tau_B = \frac{1 - \left[1 - \frac{e_L \tau_L}{1 - \tau_L}\right] \left[\bar{b}_{\text{received}} \bar{y}_L (1 + \hat{e}_B) + \frac{\nu}{R/G} \bar{b}_{\text{left}} \bar{y}_L \right]}{1 + \hat{e}_B - \left[1 - \frac{e_L \tau_L}{1 - \tau_L} \bar{b}_{\text{received}} \bar{y}_L (1 + \hat{e}_B) \right]}
\]

(8)

• \(\bar{b}_{\text{left}}, \bar{b}_{\text{received}}\) and \(\bar{y}_L\) are respectively the ratios of bequest left, bequest received and earnings of the sub-group targeted by the government to population averages.

• \(e_B\) and \(e_L\) are respectively the elasticities of aggregate taxable bequests and taxable income.

• \(R/G = e^{(r-g)H}\) with \(r\) the return on capital and \(g\) the growth rate.

• \(\nu\) is the parameter for pure bequest motive.
Table VII – Optimal Inheritance Tax Rate Calibrations

<table>
<thead>
<tr>
<th></th>
<th>Optimal Tax Rate (by Percentile of Bequest Received)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>France</td>
</tr>
<tr>
<td>Fraction of the Bequest Elasticity due to Real Responses</td>
<td>100%</td>
</tr>
<tr>
<td>Real Elasticity</td>
<td>0,25</td>
</tr>
</tbody>
</table>

1. Optimal Linear Tax Rate by Percentile of Bequest Received

- **Meritocratic Rawlsian Case**: P0-50
 - France: 61% 64% 67% 71% 76%
 - U.S.: 56% 59% 63% 66% 70%

- **Median Voter Case**: P40-60
 - France: 59% 63% 66% 70% 74%
 - U.S.: 56% 59% 63% 66% 71%

- **Pro-Capitalist Case**: P90-95
 - France: -340% -328% -315% -300% -284%
 - U.S.: -93% -82% -70% -57% -43%

2. Optimal Top Tax Rate Above Positive Exemption Amount for Zero Receivers (bottom 50%)

- **Above 500,000**: 61% 66% 72% 79% 88%
- **Above 1,000,000**: 61% 67% 74% 82% 92%
• Optimal tax rate in Meritocratic Rawlsian case and Median Voter case:
 • in France: 60%-70%
 • in the USA: 55%-65%
 • When elasticity is due entirely to real responses: $\tau_B = 60$

• Bottom 50% receivers and Median voter
 • leave substantially less wealth than average to their heirs
 • have earnings close to average

• Optimal policy is to increase inheritance tax rate and reduce labor tax rate

• In the Pro-capitalistic case, inheritance should be subsidized
Conclusion

• First comprehensive study of behavioral responses to inheritance tax

• We have benefited from:
 • First-time access to longitudinal data set of life insurance policies
 • Compelling variation created by the French preferential tax scheme for life insurance transmitted at death

• Estimation of two kinds of behavioral responses
 • Timing responses using bunching estimation:
 Strong short-term timing responses reflect moderate inter-temporal shifting in the medium term
 • Aggregate real and shifting among asset portfolio responses:
 Medium-term elasticity = 0.35 Long-term elasticity = 0.24
Conclusion

- Motivations behind bequest motives:
 - Increasing effect of inheritance taxation with respect to age: Evidence that individuals fail to plan for the disposition of an estate well in advance
 - Timing responses less important than aggregate shifting and real responses
 Evidence of “Wealth loving” motive

- Policy implications:
 - Optimal tax rate might be as large as 60%–70% in the median voter or meritocratic Rawlsian case
 - Inheritance should be subsidized in the Pro-capitalistic case
Outline

Macro-series and Data
 Macro-series
 Data

Empirical approach
 Timing responses due to the notch
 Medium and long term responses to inheritance tax

Theoretical framework

Optimal inheritance tax rate

Appendix
BACK UP SLIDES
The Preferential tax scheme for life insurance

Table 9: Life insurance taxation at death since 1998

<table>
<thead>
<tr>
<th>Life insurance taken out</th>
<th>Insurance premiums paid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before 11/20/1991</td>
<td>Flat tax rate of 20%</td>
</tr>
<tr>
<td>After 11/20/1991</td>
<td>Recalled into the inheritance tax base</td>
</tr>
</tbody>
</table>

- Before aged 70
- After aged 70

Note: Top inheritance tax rate goes up to 40% for spouses and direct descendants and 60% for collateral heirs.
Panel A: Life insurance policies taken out after 20/11/1991

<table>
<thead>
<tr>
<th></th>
<th>All life insurance owners</th>
<th>Wealthy insured</th>
<th>Standard insured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>68.5 (5.88)</td>
<td>69.5 (6.04)</td>
<td>68.4 (5.85)</td>
</tr>
<tr>
<td>Life insurance policy (in ’000s of 2013 euros)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>60.2</td>
<td>192.7</td>
<td>41.7</td>
</tr>
<tr>
<td>p50</td>
<td>14.5</td>
<td>54.7</td>
<td>11.5</td>
</tr>
<tr>
<td>p99</td>
<td>611.2</td>
<td>2,002.5</td>
<td>419.1</td>
</tr>
<tr>
<td>P99-100</td>
<td>1,757.7</td>
<td>6,473.7</td>
<td>829.8</td>
</tr>
<tr>
<td>Life insurance premiums (in ’000s of 2013 euros)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>1.2</td>
<td>3.0</td>
<td>0.9</td>
</tr>
<tr>
<td>p99</td>
<td>20.1</td>
<td>41.8</td>
<td>17.8</td>
</tr>
<tr>
<td>Number of observations</td>
<td>7,826,454</td>
<td>958,265</td>
<td>6,868,189</td>
</tr>
<tr>
<td>Number of individuals</td>
<td>347,253</td>
<td>41,074</td>
<td>306,179</td>
</tr>
<tr>
<td>Average number of spells</td>
<td>22.5</td>
<td>23.3</td>
<td>22.4</td>
</tr>
<tr>
<td>Duration of the contract (in years)</td>
<td>12.4</td>
<td>13.5</td>
<td>12.3</td>
</tr>
</tbody>
</table>
Panel B. Life insurance policies taken out between 20/11/1989 and 20/11/1993

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>policies taken out before 20/11/1991</th>
<th>policies taken out after 20/11/1991</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>70.2 (6.25)</td>
<td>70.1 (6.24)</td>
<td>70.2 (6.27)</td>
</tr>
<tr>
<td>Life insurance policy (in ’000s of 2013 euros)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>89.5</td>
<td>73.5</td>
<td>106.4</td>
</tr>
<tr>
<td>p50</td>
<td>26.3</td>
<td>23.5</td>
<td>29.5</td>
</tr>
<tr>
<td>p99</td>
<td>822.3</td>
<td>719.1</td>
<td>967.7</td>
</tr>
<tr>
<td>P99-100</td>
<td>2,970.7</td>
<td>1,987.6</td>
<td>3,978.3</td>
</tr>
<tr>
<td>Life insurance premiums (in ’000s of 2013 euros)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>p99</td>
<td>2.9</td>
<td>2.5</td>
<td>3.2</td>
</tr>
<tr>
<td>Number of observations</td>
<td>747,307</td>
<td>383,153</td>
<td>364,154</td>
</tr>
<tr>
<td>Number of individuals</td>
<td>31,073</td>
<td>15,514</td>
<td>15,559</td>
</tr>
<tr>
<td>Average number of spells</td>
<td>24.1</td>
<td>24.7</td>
<td>23.4</td>
</tr>
<tr>
<td>Duration of the contract (in years)</td>
<td>21.9</td>
<td>23.0</td>
<td>20.8</td>
</tr>
</tbody>
</table>

Source: Computation of the authors from Axa data set.
Estimating the empirical distribution

• Fit a flexible polynomial to the empirical distribution, excluding data in a range around the notch

\[\log y_a = \sum_{j=0}^{J} \beta_j \cdot (a)^j + \sum_{k=a_{l}}^{a_{u}} \gamma_k \cdot \mathbb{1}_{a=k} + \varepsilon_a \]

where \(\log y_a \) is the log of life insurance premiums paid by individuals of age \(a \), \(J \) is the order of polynomial, \(a \) is the age normalized to be equal to 0 at the cutoff, \([a_{l}, a_{u}]\) is the excluded range around the notch point, \(\mathbb{1} \) is the indicator function and \(\varepsilon_a \) is the error term
Estimating the counterfactual distribution, Bunching and Holes

- Estimate of counterfactual distribution:

\[
\log y_a^c = \sum_{j=0}^{J} \hat{\beta}_j \cdot (a)^j
\]

(9)

- Estimates of excess bunching and hole (missing mass):

\[
\hat{b} = \frac{\sum_{a=a_l}^{a_u} \log y_a - \log y_a^c}{\log y_a^c}
\]

\[
\hat{m} = \frac{\sum_{a=\hat{a}}^{a_u} \log y_a^c - \log y_a}{\log y_a^c}
\]
FIGURE 8: Falsification experiment with both groups affected by the tax change

![Graph showing insurance premiums in log scale against age for two groups of insurance contracts taken out between different dates.]

- Dashed line: Insurance contracts taken out between 20/11/1993 and 20/11/1995
Figure 9: Falsification experiment with both groups affected by the tax change
Figure 10: Falsification experiment with both groups unaffected by the tax change
Figure 11: Falsification experiment with both groups unaffected by the tax change
Figure 12: Other distributions from life insurance taken out before 11/20/1991
FIGURE 13: Number of life insurance policies by year of subscription
Figure 14: Number of life insurance policies by date of subscription
Table 10: Narrowing the window “±1 year”

<table>
<thead>
<tr>
<th>Treatment: Aged 70 or more</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average effect</td>
<td>-0.059**</td>
<td>-0.048</td>
<td>-0.115***</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.030)</td>
<td>(0.037)</td>
</tr>
<tr>
<td>Between 70 and 75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elasticity (\frac{d\log y}{d\log (1-\tau)}) estimate</td>
<td>0.204**</td>
<td>0.168</td>
<td>0.401***</td>
</tr>
<tr>
<td></td>
<td>(0.103)</td>
<td>(0.103)</td>
<td>(0.130)</td>
</tr>
<tr>
<td>After 75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of observations</td>
<td>286425</td>
<td>286425</td>
<td>286425</td>
</tr>
<tr>
<td>Number of individuals</td>
<td>10864</td>
<td>10864</td>
<td>10864</td>
</tr>
</tbody>
</table>

(Policy taken out between 20/11/1990 and 20/11/1992)

* p < 0.1, ** p < 0.05, *** p < 0.01. The standard errors in parentheses are clustered at the individual level.
Table 11: Widening the window “±5 years”

<table>
<thead>
<tr>
<th>Treatment : Aged 70 or more</th>
<th>Average effect</th>
<th>Between 70 and 75</th>
<th>After 75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced-form estimate</td>
<td>-0.061***</td>
<td>-0.059***</td>
<td>-0.072***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.011)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>Elasticity $\frac{d \log y}{d \log (1 - \tau)}$ estimate</td>
<td>0.210***</td>
<td>0.203***</td>
<td>0.249***</td>
</tr>
<tr>
<td></td>
<td>(0.039)</td>
<td>(0.039)</td>
<td>(0.049)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>2269600</td>
<td>2269600</td>
<td>2269600</td>
</tr>
<tr>
<td>Number of individuals</td>
<td>87286</td>
<td>87286</td>
<td>87286</td>
</tr>
</tbody>
</table>

* p < 0.1, ** p < 0.05, *** p < 0.01. The standard errors in parentheses are clustered at the individual level.
Table 12: Robustness Check 2: Both groups unaffected by the reform

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment : Aged 70 or more</td>
<td>Average effect</td>
<td>Between 70 and 75</td>
</tr>
<tr>
<td>Reduced-form estimate</td>
<td>-0.035*</td>
<td>-0.037*</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Elasticity</td>
<td>0.122*</td>
<td>0.128*</td>
</tr>
<tr>
<td></td>
<td>(0.066)</td>
<td>(0.065)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>586490</td>
<td>586490</td>
</tr>
<tr>
<td>Number of individuals</td>
<td>23448</td>
<td>23448</td>
</tr>
</tbody>
</table>

* p < 0.1, ** p < 0.05, *** p < 0.01. The standard errors in parentheses are clustered at the individual level.
TABLE 13: Robustness Check 3: Both groups affected by the reform

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment: Aged 70 or more</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average effect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between 70 and 75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After 75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced-form estimate</td>
<td>0.027</td>
<td>0.024</td>
<td>0.042*</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.018)</td>
<td>(0.022)</td>
</tr>
<tr>
<td>Elasticity $\frac{d \log y}{d \log (1 - \tau)}$ estimate</td>
<td>-0.093</td>
<td>-0.083</td>
<td>-0.147*</td>
</tr>
<tr>
<td></td>
<td>(0.062)</td>
<td>(0.062)</td>
<td>(0.077)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>1113739</td>
<td>1113739</td>
<td>1113739</td>
</tr>
<tr>
<td>Number of individuals</td>
<td>42325</td>
<td>42325</td>
<td>42325</td>
</tr>
</tbody>
</table>

* $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$. The standard errors in parentheses are clustered at the individual level.