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‘Weak’ trends for inference and forecasting in finite samples

Abstract

This paper studies the small sample properties of processes which exhibit both a stochas-

tic and a deterministic trend. Whereas for estimation, inference and forecasting purposes the

latter asymptotically dominates the former, it is not so when only a finite number of observa-

tions is available and large non-linearities in the parameter estimators result. To analyze this

dependence, we resort to local-asymptotics and present the concept of a ‘weak’ trend whose

coefficient is of order O(T−1/2), so that the deterministic trend is O(T 1/2) and the process

Op(T 1/2). In this framework, parameter estimates, unit-root test statistics and forecast errors

are functions of ‘drifting’ Ornstein-Uhlenbeck processes. We derive a comparison of direct and

iterated multi-step estimation and forecasting of a—potentially misspecified—random walk

with drift, and show that we explain well the non-linearities exhibited in finite samples. An-

other main benefit of direct multi-step estimation stems from some different behaviors of the

‘multi-step’ unit-root and drift tests under the weak and strong (constant coefficient) trend

frameworks which could lead to testing which framework is more relevant. A Monte Carlo

analysis validates the local-asymptotics approximation to the distributions of finite sample

biases and test statistics.

Keywords: Stochastic Trend, Deterministic Trend, Local Asymptotics, Multi-step Forecasting.

JEL Classification: C22, C52, C53.

Résumé

Cet article étudie les propriétés en échantillons de petite taille de processus présentant con-

jointement une tendance stochastique et une déterministe. Tandis que cette dernière domine

asymptotiquement la précédente pour ce qui est de l’estimation, de l’inférence et de la prévision,

ce n’est pas le cas en présence d’un nombre fini d’observations et que les estimateurs de

paramètres présentent de fortes non-linéarités. Afin d’analyser cette dépendance, nous re-

courons à des méthodes localement asymptotiques et introduisons le concept de tendance

“faible” dont le coefficient est d’ordre O(T−1/2), ce qui rend la tendance déterministe d’ordre

O(T 1/2) et le processus Op(T 1/2). Dans ce cadre, les estimateurs des paramètres, les statis-

tiques de tests de racine unitaire et les erreurs de prévision sont fonction de processus d’Ornstein-

Uhlenbeck “avec dérive”. Nous présentons une comparaison de méthodes d’estimation et de

prévision multi-étapes directe et itérée d’une marche aléatoire avec dérive (potentiellement

mal spécifiée). Nous parvenons ainsi à expliquer la non-linéarité rencontrée en échantillons

de taille finie. Un autre bénéfice de l’estimation multi-étapes provient des comportements

différents des statistiques de tests ”multi-étapes” de racine unitaire et de dérive selon que le

cadre de tendance faible ou forte (à coefficient constant) s’applique, ce qui pourrait mener à

un test entre ces derniers. Une simulation de Monte-Carlo valide l’approche d’approximation

localement asymptotique pour ce qui concerne les distributions des biais d’estimation et de

statistiques de tests en échantillons finis.

Mots-clefs: Tendance Stochastique, Tendance Déterministe, Asymptote Locale, Prévision

multi-étapes.

Codes JEL: C22, C52, C53.
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‘Weak’ trends for inference and forecasting in finite samples

1 Introduction

There has been sustained interest over the last twenty years in studying the properties of deter-

ministic and stochastic trends. Determining how to best represent the trending behavior of some

economic process is still of interest and not yet entirely settled, as Diebold and Senhadji (1996)

and Phillips (2004) show. Although it might be difficult to distinguish between deterministic and

stochastic trends in small samples, it is essential to discern which is most appropriate since their

long-term properties are radically different. Yet, as Sampson (1991) showed, when the parame-

ters are to be estimated, the consequences of either model—when well-specified—are similar for

prediction—as long as the true model is being used as Clements and Hendry (2001) point out.

Chevillon and Hendry (2004) have shown that when estimating the parameters of an AR(1)

model when the model is truly a random walk with a drift which is close to zero, and with

some potential misspecified error serial correlation, the estimators can be badly biased in finite

samples owing to the presence of both a stochastic and a deterministic trend. When analyzing the

consequences thereof for multi-step forecasting, via comparing an iterated one-step ahead procedure

to a direct multi-step technique, they showed that this setting was highly beneficial to the latter

forecasting method.

Our aim here is to introduce the concept of a ‘weak’ trend to model these findings and to show

that there is in fact small-sample ambivalence and a continuum between deterministic and pure

stochastic trends when allowing the parameter of the deterministic trend to vanish asymptotically.

The data generating process that we use is, thus, nearly I(1) with a local-to-zero drift and is

generated by the model

yt,T = τT + ρT yt−1,T + εt, (t, T = 1, 2, ...) (1)

where y0,T = y∗0 is any random variable whose distribution is fixed and independent of T , including

a constant. Thus, {yt,T } formally constitutes a triangular array of the type {yt,T : t = 1, ..., T ;

T = 1, 2...}. But this is not central to our discussion and we refer to the process generated by (1)

as {yt}. In order to assess the small sample properties of the estimators, we assume a local-to-zero

drift, and a local-to-unity root so that:

τT = ψ/T k and ρT = exp (φ/T ) , (2)

where k, ψ and φ can potentially take any real (not necessarily non-zero) values. If ψ 6= 0 and

k > 0, the intercept in (1) tends to zero as the sample size increases. The parameter φ in (2) can

be treated as a noncentrality parameter as in Phillips (1987b), so that, depending on its sign, the

process {yt} , for finite T , is either stable over some stretches of the data (φ < 0), or not (φ ≥ 0);

moreover, it is deterministically trending if φ = 0 and ψ 6= 0; difference stationary if φ = 0 and

ψ = 0 (for appropriate choice of y∗0); or explosive if φ > 0. The parameters of the process tend,

however, to those of a random walk without drift as, when T → ∞, τT → 0 and ρT → 1. Notice

that the rates of approach to the limiting values vary for the two parameters: Op
(
T−k

)
for the

intercept and Op
(
T−1

)
for the slope. Depending on the values of the parameters (k, ψ, φ) different

asymptotic distributions result.
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This article studies the principal aspects of weakly trending processes in terms of estimation

and forecasting. It is therefore organized as follows. We first present our motivations for this

analysis in section 2. We then provides the framework of our analysis and defines the drifting

Ornstein-Uhlenbeck process that we require subsequently. In section 4, we derive some asymptotic

results concerning sample statistics and use them in §5 to establish the limiting distributions of

the biases from estimation of a weakly drifting AR(1) process. Section 6 gives the distribution of

specification tests under weakly trending properties and shows that the behavior of the statistics

radically differ from the strong trend case. The consequences of our framework for forecasting are

considered in §7. A Monte Carlo analysis of the validity of the weak trend approximation in small

samples follows in section 8. An appendix presents the proofs of the main theorems and lemmata

and recalls the principal variables used.

2 Multi-step forecasting motivations

In the course of comparing two methods for forecasting at varying horizon, namely iterating a one-

step ahead forecast (which they call iterated multi-step, or IMS) and direct multi-step estimation

and forecasting (DMS), Chevillon and Hendry (2004) notice that the biases of the parameter

estimators of a random walk with drift exhibit non-linearity in small samples. For simplicity,

consider the IMA(1,1), with x0 = 0 and, where we allow some misspecification θ ∈ (−1, 1) in:

DGP : xt = τ + xt−1 + εt, (3)

εt = ζt + θζt−1,

and ζt ∼ IN[0, σ2
ζ ]. Re-write (3) as xT+h = xT + hτ +

∑h−1
i=0 εT+h−i, with corresponding forecasts

from the two methods given by:

MIMS : x̂T+h = ρ̂{h}α̂+ ρ̂hxT , and (4)

MDMS : x̃T+h = τ̃h + ρ̃hxT , (5)

where the estimators are obtained by ordinary least-squares (omitting misspecification for both

methods and the additional residual autocorrelation for DMS). When τ = 0 and the intercept is

not estimated, Banerjee, Hendry, and Mizon (1996) have shown that ρ̃h is asymptotically more

(respectively less) accurate than ρ̂h if θ is negative (resp. positive). By contrast, the presence of a

non-zero drift means that IMS and DMS estimators share the same asymptotic distribution: both

(T 1/2(τ̃h − hτ), T 3/2(ρ̃h − 1))′ and (T 1/2
(
ρ̂{h}α̂− hτ

)
, T 3/2

(
ρ̂h − 1

)
)′ converge in law towards

N2

[
0, h2

(
4 −6/τ

−6/τ 12/τ2

)
(1 + θ)2 σ2

ζ

]
. (6)

The distributions differ in finite samples, though since the conditional moments are non-

4
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coefficient. The right-hand-side panels (b and d) exhibit a set of contours for the panels on their
left. The lines join points at the same altitude (z-axis) on the 3D graphs.
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constant, owing to the presence of a stochastic trend and an omitted moving-average component:

E [xt+h | xt] = τ

h− θ
1
t

+
t− 1
t

(1 + θ)2

+

(
1 +

θ

1 + (1 + θ)2 (t− 1)

)
xt, (7)

V [xt+h | xt] = σ2
ζ

(
1 + θ2 + (1 + θ)2 (h− 1)− θ2

1 + (1 + θ)2 (t− 1)

)
.

The interaction between the stochastic and deterministic trends in small samples—where their

influences have more similar magnitudes—therefore affects estimation. Given that the estimated

parameters correspond to (7), we expect that, when θ is negative, one should under-estimate the

unit-root and over-estimate the intercept. The negative asymptotic covariance of the biases in (6)

reinforces this. Such a misestimation converts the intercept from a ‘drift’ term to an ‘equilibrium

mean’ of the (pseudo-) stationary estimated process. The behaviors of the estimators for the two

methods are therefore non-linear and non-monotonic in the parameters of the DGP and the horizon.

In such a setting, DMS is more robust to unmodeled residual autocorrelation, as in Hall (1989).

Chevillon and Hendry (2004) proceed to a Monte Carlo simulation for a sample size of T = 25

observations and we reproduce here their graphs of the estimator biases, respectively figures1 1 and

2 for IMS and DMS estimation. We notice that the intercept estimation bias is non linear in the

value of the drift and that, in the presence of omitted negative serial correlation of the residuals,

its value achieves a local maximum for some value of the drift.In turn, these translate into the

Monte Carlo means of the 4-step ahead unconditional Mean Square Forecast Errors as in figure 3

for the two models and response surfaces for the parameters.

First, in panels b and d, for non-zero θ and τ , DMS entails a lower mean square forecast error

(MSFE) than IMS. The striking feature is that MSFE is generally increasing in θ for DMS, which

means that a more misspecified model will forecast better, but this is not true for IMS when

the drift is greater than 0.1, as the IMS MSFE surface is saddle shaped: it is increasing in θ for

θ ≥ −0.5, decreasing elsewhere; increasing in τ for value smaller than about 0.3, but decreasing

for higher values. It is this behavior which we wish to model via local asymptotics in this paper.

But prior to this, we need to define our framework.

3 Preliminary theory

3.1 A weak trend

In our analysis, we assume throughout that {εt}∞1 in (1) is an innovation sequence which satisfies

the following conditions (Phillips, 1987b):

1Figure panels are referred to as a to d left to right, top to bottom. Graphs were produced using GiveWin and

the Ox programming language.
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(i) E [εt] = 0 for all t;

(ii) sup
t

E |εt|β+η
<∞ for some β > 2 and η > 0;

(iii) σ2 = lim
T→∞

T−1E
[
u2
T

]
exists and σ2 > 0, where uT =

∑T

j=1
εj ; and

(iv) {εt} is strongly mixing with mixing coefficients αm such that
∞∑
m=1

α1−2/β
m <∞.

Conditions (i)–(iv) are quite standard and reasonably weak. The innovation sequence {εt} is

therefore heterogeneously distributed and weakly dependent over time. Thus many finite-order

ARMA models, under general conditions, are possible. In particular, we will study the case of

MA(1) errors:

εt = ζt + θζt−1, (8)

and ζt ∼ N(0, σ2
ζ). Equation (1) can be re-written for yt,T as:

yt,T = ρtT y0 +
∑t−1

i=0
ρiT (τT + εt−i) ,

= ρtT y0 + τT
∑t−1

i=0
ρiT +

∑t−1

i=0
ρiT εt−i,

and, letting λ = eφ,

if φ 6= 0 : yt,T = λt/T y0 + ψT−k 1− λt/T

1− λ1/T +
∑t−1
i=0 λ

i/T εt−i,

if φ = 0 : yt,T = y0 + ψtT−k +
∑t−1
i=0 εt−i.

(9)

Notice that the distribution of yt,T is varying continuously for φ→ 0. Let [w] denotes the integer

part of w for any real scalar w. Define, then, XT in D [0, 1], the space of real-valued functions on

the interval [0, 1] which are right continuous and have finite left limits (cadlag):2

∀r ∈ [0, 1] , XT (r) = T−1/2u[Tr] ⇒ σW (r) , as T →∞ (10)

where ‘⇒’ denotes weak convergence of the associated probability measure, and W (r) is a standard

Brownian motion on C [0, 1] (the subspace of D [0, 1] of continuous functions); and, when {εt} is

weakly stationary with covariance function series
{
γ

(ε)
i

}∞
i=1

, the variance σ2 is given by:

σ2 = lim
T→∞

T−1E
[
u2
T

]
= lim
T→∞

T−1

(
T∑
t=1

E
[
ε2t
]
+ 2

T∑
t=1

t−1∑
i=1

E [εtεt−i]

)
= σ2

ε + 2
∞∑
i=1

γ
(ε)
i . (11)

Notice that limT→∞ T−1E [uTuT−i] = σ2 for fixed i, and, when (8) is satisfied, σ2 = (1 + θ)2 σ2
ζ .

We can now formally introduce the concept which constitutes the focus of this paper.

2D = D [0, 1] is endowed with the uniform metric

||·|| : D → R
f → supr |f |

9
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Definition 1 A time series {yt} which is generated by (1) and (2), and where {εt} satisfies (i)–

(iv), is said to exhibit a ‘weak’ drift or (deterministic) trend if ψ 6= 0 and k > 0. When ψ = 0, {yt}
is near-integrated (φ 6= 0) or integrated (φ = 0) as in Phillips (1987b). By contrast, a non-weak

drift is said to be strong, and this is the case for ψ 6= 0 and k ≤ 0.

The terminology that we use here corresponds to the usage popularized by Staiger and Stock

(1997) in the context of ‘weak instruments’. The concepts of integratedness and of a near-integrated

process follow, respectively, Box and Jenkins (1976) and Phillips (1987b). It should be noted

that when ψ 6= 0 and k > 0, the weak trend includes cases when the process is either strongly

autoregressive (even stationary), for φ < 0, or mildly explosive, when φ > 0, in finite samples.

3.2 A useful functional

To derive the results concerning the asymptotic properties of weakly trending processes, we need

to define the functional Kψ,φ (r):

Kψ,φ (r) = ψfφ (r) + σ

∫ r

0

eφ(r−s)dW (s) , for r ∈ [0, 1] ,

where we use the continuous deterministic functional f(·) : R → C [0, 1], such that for φ ∈ R\{0}:3

fφ (·) : r → eφr − 1
φ

,

and f0 (r) = r. Notice the uniform continuity of the function (ψ, φ) → Kψ,φ in (·, 0), since

lim
φ→0

∣∣∣∣∣∣E [(Kψ,φ −Kψ,0)
2
]∣∣∣∣∣∣ = 0.

Here, Kψ,φ (r) is a Gaussian process for fixed r and

Kψ,φ (r) ∼ N
(
ψfφ (r) , σ2f2φ (r)

)
, ∀r ∈ [0, 1] ,

where ‘∼’ means equality in distribution. Kψ,φ (r) follows the linear stochastic differential equation

with white noise:

dKψ,φ (r) = [ψ + φKψ,φ (r)] dr + σdW (r) , (12)

and initial condition Kψ,φ (0) = 0, so that, in the case where ψ = 0, it reduces to an Ornstein-

Uhlenbeck process, satisfying the stochastic differential equation:

dK0,φ (r) = φK0,φ (r) dr + σdW (r) ,

and initial condition K0,φ (0) = 0. For a fixed r ∈ [0, 1], the process K0,φ (r) is normally distributed

with mean zero and variance σ2 [exp (2φr)− 1] / (2φ). The presence of a non-zero trend implies

that:

Kψ,φ (r) = ψfφ (r) +K0,φ (r) . (13)
3We will straightforwardly extend this definition below to allow for r > 1 in forecasting.
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The case φ = 0 is slightly different since it, then, implies

K0,0 (r) = σW (r) ,

but

Kψ,0 (r) = ψr + σW (r) .

When ψ = 0, the theory matches that of Phillips (1987b). Notice that (12) could allow one to

define Kψ,φ (r) as an Ornstein-Uhlenbeck process with drift (or OU-d).

Remark 1 Note that the formula (12) leads to the following properties (using Itô’s lemma):

dK2
ψ,φ (r) =

(
2Kψ,φ (r) [ψ + φKψ,φ (r)] + σ2

)
dr + 2σKψ,φ (r) dW (r) , and (14)

{Kψ,φ (1)}2 = σ2 + 2
∫ 1

0

[
ψKψ,φ (r) + φK2

ψ,φ (r)
]
dr (15)

+2σ
∫ 1

0

Kψ,φ (r) dW (r) , (16)

which will prove useful.

4 Asymptotics for weakly trending processes

The first step is to find the asymptotic distribution of some population statistics in terms of the

functional Kψ,φ (r) as it was defined above. The first results that we need correspond to the order

of magnitude of the intercept, namely k in (2). The following lemma provides the asymptotic

distribution of the process.

Lemma 1 If {yt} is a time series generated by (1) and (2), then as T →∞

YT (r) = T−py[Tr],T ⇒


K0,φ (r) if p = 1/2, and either k > 1

2 , or ψ = 0,

Kψ,φ (r) if p = k = 1/2, and ψ 6= 0,

ψfφ (r) if p > 1/2, and k = 1− p,

where, in the other cases, T−py[Tr],T diverges.

Proof. From (9), for r ∈ [0, 1] ,

y[Tr],T = eφ[Tr]/T y0 +
[∑[Tr]−1

i=0
eφi/T

]
ψ/T k +

∑[Tr]−1

i=0
eφi/T ε[Tr]−i.

Thus:

T−py[Tr],T = T−(p+k)ψ

[∑[Tr]−1

i=0
eφi/T

]
+ T−p

∑[Tr]

i=1
eφ([Tr]−i)/T εi,

= T 1−(p+k)ψfφ (r)
(
1 +O

(
T−1

))
+ T−(p−1/2)

[
T−1/2

∑[Tr]

i=1
eφ([Tr]−i)/T εi

]
,

11
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where T−1/2
∑[Tr]
i=1 e

φ([Tr]−i)/T εi ⇒ K0,φ (r) (Phillips, 1987b). Hence the different cases.

Notice that the case p > 1/2 and k = 1 − p includes p = 1 and k = 0, which corresponds to

a non-degenerate linear trend, whose results are well-known. This framework allows for negative

values of k, and the series may exhibit, for instance, a quadratic trend if p = 2 and k = −1. Since

our purpose is to model the interaction between the deterministic trend and the unit root, we

focus, in the rest of this paper, on the case k = 1/2, for which T−1/2y[Tr],T ⇒ Kψ,φ (r).

Remark 2 Notice the triangular aspect of our framework, where the distribution of yt|yt−1 depends

on the sample size. Avoiding this issue, when we assume a unit-root, could lead to the following

DGP:

yt = τ t + yt−1 + εt, (t = 1, 2, ...) (17a)

τ t = ψ/
√
t, (17b)

in which case

T−1/2y[Tr] ⇒ Zψ (r) = 2ψ
√
r + σW (r) ,

and we notice that the deterministic components in Kψ,0 (r) and Zψ (r) are of different orders of

magnitude with respect to r. The intercept that is observed for a sample of T observations is the

average τT = T−1
∑
τ t, such that τT /

(
2ψT−1/2

)
→ 1 as T →∞.

We can now state our result concerning the sample statistics in terms of the functional defined

above.

Lemma 2 If {yt} is a near random–walk process with weak drift generated by (1) and (2), where

k = 1/2, then as T →∞,

(a) T−1/2y[Tr],T ⇒ Kψ,φ (r) ;

(b) T−3/2
∑
yt,T ⇒

∫ 1

0
Kψ,φ (r) dr;

(c) T−2
∑
y2
t,T ⇒

∫ 1

0
K2
ψ,φ (r) dr;

(d) T−1
∑
yt−1,T εt ⇒ σ

∫ 1

0
Kψ,φ (r) dW (r) + 1

2

(
σ2 − σ2

ε

)
;

with σ2
ε = limT−1

∑
E
(
ε2t
)
. Joint weak convergence of (a)–(d) also applies.

Similar results hold for Remark (2) and Zψ (r), replacing respectively (1)–(2) and Kψ,φ (r).

Proof. It can be seen in Phillips (1987b) in the case ψ = 0; the proof in the non-zero case can

be seen as a special case of the multi-step moments analyzed below.

Notice that, when (8) is satisfied, σ2
ε =

(
1 + θ2

)
σ2
ζ and 1

2

(
σ2 − σ2

ε

)
= θ. The results can be

used to approximate the sample moments of weakly trending non-stationary time series. Since

Kψ,φ (r) is Gaussian, it is easy to show that:∫ 1

0

Kψ,φ (r) dr ∼ N

(
ψ

∫ 1

0

fφ (r) dr, σ2

(
eφ − 1

)2 (1− e−2φ
)

2φ3

)
,

12
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where
∫ 1

0
fφ (r) dr =

(
eφ − φ− 1

)
/φ2 for φ 6= 0 and (notice the continuity)

∫ 1

0
f0 (r) dr = 1/2. We,

now, have at our disposal the elements necessary to establish the asymptotic properties derived

from the estimation, inference and forecasting of a weakly trending process.

5 Estimation

5.1 OLS estimator biases

We derive in this subsection the asymptotic biases that result from the estimation of the misspeci-

fied first-order autoregressive model AR(1) with a fixed starting value y0,T and a fixed intercept; it

is, potentially wrongly, assumed that the disturbances (εt) are weakly stationary and uncorrelated

across time in:

yt,T = τ + ρyt−1,T + εt, (t = 1, 2, ..., T ) .

The estimation method used is ordinary least-squares (OLS) over a sample of size T . The corre-

sponding biases, under the weak trend and local unit-root case as in (2), are given by:[ √
T (τ̂T − τT )

T (ρ̂T − ρT )

]
=

[
1 T−3/2

∑T
t=1 yt−1,T

T−3/2
∑T
t=1 yt−1,T T−2

∑T
t=1 y

2
t−1,T

]−1 [
T−1/2

∑T
t=1 εt

T−1
∑T
t=1 yt−1,T εt

]
,

and the estimators are therefore consistent. Their limiting distribution is implied by lemma (2)

and the continuous mapping theorem as:[ √
T (τ̂T − τT )

T (ρ̂T − ρT )

]

⇒



σW (1)
∫ 1

0
K2
ψ,φ (r) dr − σ

∫ 1

0
Kψ,φ (r) dr

(∫ 1

0
Kψ,φ (r) dW (r) + 1

2

(
σ2 − σ2

ε

))
∫ 1

0
K2
ψ,φ (r) dr −

(∫ 1

0
Kψ,φ (r) dr

)2

σ
∫ 1

0
Kψ,φ (r) dW (r)− σW (1)

∫ 1

0
Kψ,φ (r) dr + 1

2

(
σ2 − σ2

ε

)
∫ 1

0
K2
ψ,φ (r) dr −

(∫ 1

0
Kψ,φ (r) dr

)2


,

(18)

and, since ρT = exp (φ/T ) = 1 + φ/T + Op
(
T−2

)
, non-centrality of the slope estimator implies

that:

{T (ρ̂T − 1)− T (ρ̂T − ρT )} ⇒ φ, (19)

which parallels
{√

T τ̂T −
√
T (τ̂T − τT )

}
= ψ. (20)

The parameters φ and ψ, thus imply some non-centrality in the limit of, respectively, the unit-

root and the intercept estimators. Notice that the presence of a weak drift implies that both the

stochastic and deterministic trends are of the same asymptotic orders of magnitude. The unit-

root estimator is thus super-consistent and the corresponding bias is of order Op
(
T−1

)
and not

Op
(
T−3/2

)
as in the presence of a strong trend. Indeed, in the latter case—k = 0 and τT = τ∗ in

13
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(2)—OLS estimation leads to:[
T 1/2(τ̃∗ − τ∗)

T 3/2(ρ̃∗ − 1)

]
L→

T→∞
N

(
0, σ2

[
4 −6/τ∗

−6/τ∗ 12/τ∗2

])
. (21)

The consistency of the intercept estimator is more straightforward since both the weak drift

and its estimator tend towards zero; yet, it remains possible to characterize its bias. When ψ = 0,

(18) simplifies to the results in Phillips (1987b) concerning near-integratedness.

5.2 Powered-up one-step ahead estimators

To derive the implied distributions of the nonlinear combination of the OLS estimators which

provide the unconditional expectation of yt,T in terms of yt−h,T for h > 1. This can be written as

in the multi-step parameterization in the model:

yt,T = τh,T + ρh,T yt−h,T + wh,t, (t, T = h, h+ 1, ...) , for h ≥ 1, (22)

with E[wh,t] = 0, but E[wh,t|yt−h,T ] may be nonzero, in which case:

E [yt,T ] = τh,T + ρh,TE [yt−h,T ] ,

but E [yt,T |yt−h,T ] 6= τh,T + ρh,T yt−h,T .

We assume that the data generating process is given by (1), which implies that yt is given by:

yt =

(
h−1∑
i=0

ρiT

)
τT + ρhT yt−h +

h−1∑
j=0

ρjT εt−j .

Define ρ{h}T =
∑h−1
i=0 ρ

i
T and similarly for ρ̂{h}T . Let, then, τ̂{h},T = ρ̂

{h}
T τ̂T . Thus, in (22): τh,T =

ρ
{h}
T τT , ρh,T = ρhT and wh,t =

∑h−1
j=0 e

jφ/T εt−j ; using the delta method:

τ̂{h},T − τh,T

τ̂T − τT
⇒ h and

ρ̂hT − ρhT
ρ̂T − ρT

⇒ h. (23)

5.3 Direct multi-step estimators

We now wish to compare the powered-up one-step ahead estimators to those obtained by direct

in-sample minimization of the multi-step disturbances wh,t, whose variance we define as:

σ2
wh

= lim
T→∞

T−1E

[
T∑
t=h

w2
h,t

]
= hσ2

ε + 2
h−1∑
i=1

(h− i) γ(ε)
i , (24)

and let:

T−1/2vh,[Tr] = T−1/2

[Tr]∑
i=h

wh,i = T−1/2
h−1∑
j=0

ejφ/TLju[Tr],

where L is the lag operator such that Lju[Tr]−j . The asymptotic multi-step variance of {vh,T } is:

σ2
h = lim

T→∞
T−1E

[
v2
h,T

]
= h2σ2,

14
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so that, in terms of variance, {vh,T } behaves as h times the near stochastic trend {ut}. Then,

simply, for r ∈ [0, 1],

Xh,T (r) = T−1/2vh,[Tr] ⇒ σhW (r) = hσW (r) , as T →∞

and we derive the equivalent of lemma 2 for the multi-step statistics.

Theorem 1 If {yt} is a near random-walk process with weak drift generated by (1) and (2), then,

for all fixed integer h ∈ [1, T ), as T →∞,

(ah) T−1/2y[Tr],T ⇒ Kψ,φ (r)

(bh) T−3/2
∑T
t=h yt,T ⇒

∫ 1

0
Kψ,φ (r) dr;

(ch) T−2
∑T
t=h y

2
t,T ⇒

∫ 1

0
K2
ψ,φ (r) dr;

(dh) T−1
∑T
t=h yt−h,Twh,t ⇒ hσ

∫ 1

0
Kψ,φ (r) dW (r) + 1

2

[
hσ2 − σ2

wh

]
.

Joint convergence of (ah)–(dh) also holds. (Proof in appendix).

Remark 3 Theorem 1 relies strongly on the assumption that h is fixed since if it were not and,

for instance h = cTα for some α > 0, then

h−1T−1
T∑
t=h

yt−h,Twh,t ⇒ σ

∫ 1

0

Kψ,φ (r) dW (r) +
1
2
σ2.

Notice that, when the error process is covariance stationary,

σ2
wh

= hσ2
ε + 2

h−1∑
i=1

(h− i) γ(ε)
i ,

and we can re-write (dh) from Theorem 1, as:

T−1
T∑
t=h

yt−h,Twh,t ⇒ h

{
σ

∫ 1

0

Kψ,φ (r) dW (r) +
1
2
[
σ2 − σ2

ε

]}
−
h−1∑
i=1

(h− i) γ(ε)
i ,

i.e.

T−1

[
T∑
t=h

yt−h,Twh,t − h
T∑
t=1

yt−1,T εt

]
⇒ −

h−1∑
i=1

(h− i) γ(ε)
i . (25)

This latter term (25) shows that, if the process {εt} exhibits some serial correlation, then IMS

and DMS estimations have different asymptotic properties. This result confirms that of Weiss

(1991) who showed that when the estimated model is misspecified and exhibits omitted error serial

correlation, there can exist cases when it is preferable to use multi-step estimation. When (8) is

satisfied, the expressions simplify and σ2
wh

= hσ2 − 2θσ2
ζ and

(
hσ2 − σ2

wh

)
/2 = θ.

15
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We can now derive the limiting distributions of the estimators and, in OLS estimation of (22),

without modelling the error process, the multi-step biases become:[ √
T (τ̃h,T − τh,T )

T
(
ρ̃h,T − ρh,T

) ]

⇒

[
1

∫ 1

0
Kψ,φ (r) dr∫ 1

0
Kψ,φ (r) dr

∫ 1

0
K2
ψ,φ (r) dr

]−1

×

 hσW (1)

h
{
σ
∫ 1

0
Kψ,φ (r) dW (r) + 1

2

[
σ2 − σ2

ε

]}
−
∑h−1
i=1 (h− i) γ(ε)

i

 .

(26)

And we notice that ρh,T = exp (hφ/T ) = 1 + hφ/T +Op
(
T−2

)
, so that:{

T
(
ρ̃h,T − 1

)
− T

(
ρ̃h,T − ρh,T

)}
⇒ hφ,

and the noncentrality of the multi-step estimator shifts with the horizon h. So does, in fact, the

powered-up estimator, and we now compare them both.

5.4 Comparison of estimation techniques

If we compare both the powered-up (IMS) and direct (DMS) estimators, we notice that their biases

differ asymptotically by only:[ √
T (τ̃h,T − τh,T )

T
(
ρ̃h,T − 1

) ]
−

 √
T
(
τ̂
{h}
T − τh,T

)
T
(
ρ̂hT − 1

) 

⇒

[∑h−1
i=1 (h− i) γ(ε)

i

]
∫ 1

0
K2
ψ,φ (r) dr −

(∫ 1

0
Kψ,φ (r) dr

)2

[ ∫ 1

0
Kψ,φ (r) dr

−1

] (27)

The interesting feature here is that the asymptotic efficiency gain—or loss—from using multi-step

estimation depends on the first h terms of the autocovariance function of {εt}, and not of those

beyond. The larger the horizon, the more weight is accorded to the first autocovariance terms.

Since this is the only dependence on h in (27), the natural consequence is that, if there exists h∗,

such that γ(ε)
i = 0, for i ≥ h∗, whichever method dominates at horizon h∗ will do so increasingly

as the horizon grows thereafter. Notice, moreover, that∫ 1

0

K2
ψ,φ (r) dr −

(∫ 1

0

Kψ,φ (r) dr
)2

=
∫ 1

0

(
Kψ,φ (r)−

∫ 1

0

Kψ,φ (s) ds
)2

dr
a.s.
> 0,

and, thus, is strictly positive with probability 1. Estimation of the unit-root is, therefore, such that

the sign of the asymptotic distribution of T
(
ρ̃h,T − ρ̂hT

)
is opposite to that of

[∑h−1
i=1 (h− i) γ(ε)

i

]
.

For instance, given that unit-roots are more often under-estimated than the converse, negative

residual autocorrelation favours multi-step estimation. Since the denominator of (27) is non-

constant, and is not independent of
∫ 1

0
Kψ,φ (r) dr, we cannot easily predict the sign of the difference
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in the intercept biases from the two estimation methods. Yet, as the sign of E
[∫ 1

0
Kψ,φ (r) dr

]
is

that of ψ, assuming (i) that:

E

[(∫ 1

0
K2
ψ,φ (r) dr −

(∫ 1

0
Kψ,φ (r) dr

)2
)−1 ∫ 1

0
Kψ,φ (r) dr

]
and

E

[(∫ 1

0
K2
ψ,φ (r) dr −

(∫ 1

0
Kψ,φ (r) dr

)2
)]

E
[∫ 1

0
Kψ,φ (r) dr

]
have the same sign and (ii) that the intercept is over-estimated (in absolute value) on average—

which is a natural assumption if the slope if underestimated—then again (27) implies that negative

serial correlation of the error process benefits the multi-step estimator. As it is quite complicated

to prove our assumptions analytically, we will use a Monte Carlo experiment in section 8.

5.5 Omitted moving averages

Now in the case from equation (8), σ = 1 + θ and:

Kψ,φ (r) = ψfφ (r) + σ

∫ 1

0

eφ(r−s)dW (s)

= ψfφ (r) + (1 + θ) Jφ (r) ,

where we define Jφ (r) = σ−1K0,φ (r), to make explicit how the parameters influence Kψ,φ (r).

Then:

K2
ψ,φ (r) = ψ2f2

φ (r) + 2ψσfφ (r) Jφ (r) + σ2J2
φ (r) .

We define the operators:

D (f, g) =
∫ 1

0

f (r) g (r) dr −
(∫ 1

0

f (r) dr
)(∫ 1

0

g (r) dr
)

,

Q (f, g) = W (1)
∫ 1

0

f (r) g (r) dr −
(∫ 1

0

f (r) dr
)(∫ 1

0

g (r) dW (r)
)

,

L (f) =
∫ 1

0

f (r) dW (r)−W (1)
∫ 1

0

f (r) dr,

I (f) =
∫ 1

0

f (r) dr,

where for fixed r,∫ 1

0

Kψ,φ (r) dr ∼ N

(
ψ

∫ 1

0

fφ (r) dr,
1
2
σ2
(
eφ − 1

)2 (
1− e−2φ

)
/φ3

)
,

and write L (f, f) = L (f) , and similarly for the other operators. Recall that D (g)
a.s.
> 0 for all g.

D (·) and Q (·) are quadratic in (ψ, σ) as

D (Kψ,φ) = ψ2D (fφ) + 2ψσD (fφ, Jφ) + σ2D (Jφ) ,

Q (Kψ,φ) = ψ2Q (fφ) + ψσ [Q (fφ, Jφ) +Q (Jφ, fφ)] + σ2Q (Jφ) ,

and L (·) and I (·) are linear:

L (Kψ,φ) = ψL (fφ) + σL (Jφ) ,

I (Kψ,φ) = ψI (fφ) + σI (Jφ) ,
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where E[I (fφ)] ≥ 0,

I (Kψ,φ) ∼ N

(
ψ
(
eφ − φ− 1

)
,
1
2
σ2
(
eφ − 1

)2 (
1− e−2φ

)
/φ3

)
, if φ 6= 0,

and L (fφ) ∼ N (0,D (fφ)). Notice that L (Kψ,φ) is the limit of the scaled sample covariance of yt
and εt, whose true population value is σ2

ε . We can re-write (26) as[ √
T (τ̃h,T − τh,T )

T
(
ρ̃h,T − ρh,T

) ]
⇒ [D (Kψ,φ)]

−1

{
hσ

[
Q (Kψ,φ)
L (Kψ,φ)

]
+ θ

[
I (Kψ,φ)
−1

]}
.

The h-step DMS biases are, thus, non-linear in (ψ, σ). For θ close to −1, i.e. σ near zero, the

dependence in h is not strong and we can predict that the biases will be close at all horizons h.

We know, besides, that for θ ' −1, T
(
ρ̃h,T − ρh,T

)
will tend to a distribution close to that of:

−θ
[
ψ2D (fφ) + 2ψσD (fφ, Jφ) + σ2D (Jφ)

]−1
,

which is the inverse of a quadratic function with positive—stochastic—coefficients D (fφ) and

D (Jφ), and given one realization, achieves a global maximum in the (ψ, σ) space at (0, 0) and

monotonically decreases as ‖ψ, σ‖2 = ψ2+σ2 increases. As regards the intercept bias when θ ' −1,

and assuming that I (Kψ,φ) and D (Kψ,φ) are mildly correlated, its expectation is increasing in ψ

for low σ. For larger σ, it is no longer possible to neglect Q (Kψ,φ) , but since:

Q (Kψ,φ) = W (1)D (Kψ,φ)− I (Kψ,φ)L (Kψ,φ) ,

we can conclude that:

√
T (τ̃h,T − τh,T ) + I (Kψ,φ)T

(
ρ̃h,T − ρh,T

)
⇒ hσW (1) ,

and the behavior patterns of both biases are likely to be opposite as ‖ψ, σ‖ increases. Given that

a larger ‖ψ, σ‖ means that the trend coefficient is larger or that there is less residual autocorre-

lation, the unit-root bias is then likely to be lower, so that both intercept and slope biases are

then decreasing in ‖ψ, σ‖ . The conclusion form this heuristic analysis is that the unit-root bias is

decreasing overall in ‖ψ, σ‖ and the intercept bias is first increasing then decreasing in ‖ψ, σ‖ and

there is a set of coefficients (ψ, σ) for which the bias achieves a local (or even global) maximum.

If we compare both methods, (27) becomes:[ √
T (τ̃h,T − τh,T )

T
(
ρ̃h,T − 1

) ]
−

 √
T
(
τ̂
{h}
T − τh,T

)
T
(
ρ̂hT − 1

) ⇒ (h− 1) θ
[
[D (Kψ,φ)]

−1 I (Kψ,φ)
− [D (Kψ,φ)]

−1

]
, (28)

and under our heuristic assumption, the difference between the two is decreasing in ‖ψ, σ‖ for

the slope and increasing for the intercept. The DMS unit-root estimator is, moreover, larger than

the IMS and the sign of τ̃h,T − τ̂
{h}
T is, asymptotically, opposite that of the intercept, and given

the plausibility that the slope is under-estimated—which implies that the absolute value of the

intercept is over-estimated—the conclusion of this analysis, so far, is that the multi-step estimators

are more accurate than the powered-up one-step when ||ψ, σ|| is low.
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6 Inference

6.1 Unit-root and drift t-tests

Assume that the model is estimated by least-squares and provides the estimates
(
τ̃h,T , ρ̃h,T

)
. It

is now wished to test some hypotheses about their true values, namely, to determine whether the

intercept is significantly different from zero and whether the series exhibit a unit-root, and the

combination of both. A modeler who would posit the potential presence of a nonzero drift would

normally resort to a joint test together with that of a unit root. Here, using an F -test would

render the results less easy to observe and we resort to single hypothesis testing. Under the null

hypothesis of no intercept and a unit-root, t-statistics are constructed where

tτh
=
τ̃h,T
σ̃τh

=
T 1/2 (τh,T + τ̃h,T − τh,T ){

T σ̃2
τh

}1/2
, and tρh

=
ρ̃h,T − 1
σ̃ρh

=
T
(
ρ̃h,T − 1

){
T 2σ̃2

ρh

}1/2
,

with

Σh,T =

[
T − h+ 1

∑T
t=h yt−h,T∑T

t=h yt−h,T
∑T
t=h y

2
t−h,T

]
,

and T σ̃τh
= s2h,T

[
T 1/2 0

]
Σ−1
h,T

[
T 1/2

0

]
, T 2σ̃ρh

= s2h,T [0 T ] Σ−1
h,T

[
0
T

]
. The usual formula is used

for:

s2h,T =
1

T − h− 1

T∑
t=h

(
yt,T − τ̃h,T − ρ̃h,T yt−h,T

)2
,

and since s2h,T = 1
T−h−1

∑T
t=h

(
wh,t +Op

(
T−1/2

))2
, obviously s2h,T

p→ σ2
wh

. Letting

$h =
1
2
(
1− σ2

ε/σ
2
)
−
(
hσ2

)−1

[
h−1∑
i=1

(h− i) γ(ε)
i

]
,

which is zero if εt is white noise, the continuous mapping theorem implies that:

tτh
⇒

√
h

ψ + σ2 {D (Kψ,φ)}−1
[
σ−1Q (Kψ,φ)−$h

∫ 1

0
Kψ,φ (r) dr

]
{D (Kψ,φ)}−1/2

{
σ2
ε + 2h−1

∑h−1
i=1 (h− i) γ(ε)

i

}1/2 {∫ 1

0
K2
ψ,φ (r) dr

}1/2
,

tρh
⇒

√
h

φ+ σ2 {D (Kψ,φ)}−1 [
σ−1L (Kψ,φ) +$h

]
{D (Kψ,φ)}−1/2

{
σ2
ε + 2h−1

∑h−1
i=1 (h− i) γ(ε)

i

}1/2
.

We, thus, notice that, although the process can exhibit a deterministic trend in small samples, the

tτh
statistic under the wrong null hypothesis has a finite distribution. This is to be compared with

the case when the trend is strong. In this latter case, t∗τh
= Op

(√
T
)

although, under the null of

a unit root and zero intercept, the distribution used for testing is a Dickey-Fuller. The immediate
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consequence of this result is that, in finite samples, using the t-statistics will lead to over-rejection

of the presence of a deterministic trend. Indeed in the case of a non–weak trend, where k = 0 in

(1), the biases in (21) imply that, under the null of a unit root and of, now, τh,T = α:

t∗τh
=

τ̃h,T − α

σ̃τh

=
T 1/2 (τh,T − α+ τ̃h,T − τh,T ){

T σ̃2
τh

}1/2

tτh
−
√
hT 1/2 (τ − α/h)

2
√
σ2
ε + 2

∑h−1
i=1 (1− i/h) γ(ε)

i

L→ N

[
0, h

σ2
ε + 2

∑∞
i=1 γ

(ε)
i

σ2
ε + 2

∑h−1
i=1 (1− i/h) γ(ε)

i

]

and t∗ρh
=

ρ̃∗h − 1
σ̃∗ρh

=
T 3/2 (ρ̃∗h − 1){
T 3σ̃∗2ρh

}1/2

L→ N

(
0, h

σ2
ε + 2

∑∞
i=1 γ

(ε)
i

σ2
ε + 2

∑h−1
i=1 (1− i/h) γ(ε)

i

)
This results in both t∗τ/t

∗
τh

and t∗ρ/t
∗
ρh

converging in probability to

1√
h

√√√√1 + 2
h−1∑
i=1

(1− i/h) γ(ε)
i /σ2

ε.

Proof. Notice that, again, T σ̃∗τh
= s2h,T

[
T 1/2 0

]
Σ−1
h,T

[
T 1/2

0

]
, i.e.

T σ̃∗τh
→ 4σ2

wh
,

and T 3σ̃ρh
= s2h,T

[
0 T 3/2

]
Σ−1
h,T

[
0

T 3/2

]
, so that:

T 3σ̃∗2ρh
→ 12

(τ∗)2
σ2
wh
,

and, since T 3/2 (ρ̃∗h − 1) L→ N

(
0,

12
(τ∗)2

h2σ2

)
, hence the limiting distributions of t∗τh

and t∗ρh
. Now

(
σ̃∗τ/σ̃

∗
τh

)2 p→ σ2
ε/σ

2
wh

=
1
h

and noticing that
∑T
t=h wh,t =

∑h−1
i=0

(∑T
t=1 εt −

∑T
t=T−i+1 εt −

∑h−i−1
t=1 εt

)
,then

∑T
t=1 εt∑T
t=h wh,t

p→ 1
h

and hence the results.

The behaviors of the statistics are consistent with the general results of local asymptotics,

whereby, in our context, under the null of a ‘weak’ trend, the statistics are centered on some

parameter whose limit is finite as the sample size increases, whereas in the case of a strong trend,

this parameter itself tends to infinity. The main issue when dealing with local asymptotics is

that the weak trend parameter cannot be consistently estimated since it itself tends to zero and,

thus, the modeler cannot test which of strong or weak drift frameworks is the more appropriate.

However, if the drift is weak but the ‘strong’ framework is wrongly used for testing, under the null

of zero drift—which is the assumption that a modeler would make here, since she would otherwise
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include a deterministic trend in the estimated model—then the conventional distribution of the

test statistics leads to under-rejection of the null of no intercept, when the true value is non-zero.

In fact, the modeler would use a joint F -test of zero drift and unit-root, but our analysis of the

t-statistics will translate to the same for the F -statistics.

The main issue is therefore for the modeler to determine which of the weak or strong trend

framework is more appropriate. This is where multi-step estimation can help. Indeed, the DMS test

statistics exhibit different patterns under the two assumptions: under the weak trend hypothesis,

tτ/tτh
⇒ h−1/2

{
1 + 2

(
hσ2

ε

)−1
h−1∑
i=1

(h− i) γ(ε)
i

}1/2

(29)

×

1−

(
hσ2

)−1
[∑h−1

i=1 (h− i) γ(ε)
i

] ∫ 1

0
Kψ,φ (r) dr

ψ + σ2 {D (Kψ,φ)}−1
[
σ−1Q (Kψ,φ)−$h

∫ 1

0
Kψ,φ (r) dr

]
 , (30)

and

tρ/tρh
⇒

h−1/2
{

1 + 2
(
hσ2

ε

)−1∑h−1
i=1 (h− i) γ(ε)

i

}1/2

×

(
1 +

(
hσ2

)−1∑h−1
i=1 (h− i) γ(ε)

i

φ+ σ2 {D (Kψ,φ)}−1 [σ−1L (Kψ,φ) +$h]

)
.

(31)

Both ratios are of order Op
(
h−1/2

)
, since the multi-step method implies that the errors follow a

MA(h− 1). We notice that in both (29) and (31), there appears a coefficient which is the same

as in the strong drift case, but that tτ/tτh
is shifted downwards and tρ/tρh

upwards. Thus; in the

presence of error autocorelation:

tρ/tρh

tτ/tτh

⇒

(
1 +

(
hσ2

)−1∑h−1
i=1 (h− i) γ(ε)

i

φ+ σ2 {D (Kψ,φ)}−1 [σ−1L (Kψ,φ) +$h]

)
1−

(
hσ2

)−1
[∑h−1

i=1 (h− i) γ(ε)
i

] ∫ 1

0
Kψ,φ (r) dr

ψ + σ2 {D (Kψ,φ)}−1
[
σ−1Q (Kψ,φ)−$h

∫ 1

0
Kψ,φ (r) dr

]

,

and in this case, we see that we would be able to contruct a test for the presence of a weak trend

vs a strong.

6.2 Limit distributions as ψ → ±∞ and φ→ ±θ

It seems interesting to study the limiting behavior of the asymptotic theory in §5, as the non-

centrality parameter of the weak trend approaches the boundaries of its domain of definition. In

this case, we can expect that the deterministic trend will dominate in estimation and that the

resulting distributions should be close to those of the case of a strong drift.

The central results are contained in the following lemma:

Lemma 3 As ψ → ±∞, the behavior of the estimation biases resemble those of a strong drift case
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and

[ √
T (τ̃h,T − τh,T )

T 2
(
ρ̃h,T − ρh,T

) ]⇒


N

0, h2σ2φ
[
e2φ − 4eφ + 2φ+ 3

] [
[φ− 2] e2φ + 4eφ − [φ+ 2]

][
2 (eφ + 1)

[
φ
2 (eφ − 1)− (eφ + 1)

]]2


h2

φ−4 (eφ + 1) [φ (eφ − 1)− 2 (eφ + 1)]

 ,
with the special case of an integrated process:

1
4hσ

[√
T (τ̃h,T − τh,T )

]
L→

ψ→±∞
N (0, 1) if φ = 0,

which is exactly that of a strong deterministic trend. If we then let φ→ ±∞ :

1
hσ

[√
T (τ̃h,T − τh,T )

]
L→

ψ→±∞, then φ→+∞
N (0, 1) ,

1
hσ
√
−2φ

[√
T (τ̃h,T − τh,T )

]
L→

ψ→±∞, then φ→−∞
N (0, 1) .

and

T 2
(
ρ̃h,T − ρh,T

) L→
ψ→±∞, then φ→+∞

0,

φ−3T 2
(
ρ̃h,T − ρh,T

) L→
ψ→±∞, then φ→−∞

h2.

(Proof in appendix).

The results above are obtained by studying asymptotic behavior in successive limits: first

T → ∞, then the parameters ψ and eventually φ, if applicable. Notice that in this case, the

slope estimator achieves very strong consistency as it converges in Op
(
T−2

)
whereas the bias is

of order Op
(
T−3/2

)
in the presence of a ‘strong’ drift. The asymptotic behavior is different from

that described in Phillips (1987b) where he let φ→ ±∞ when ψ = 0, and in which he shows some

similarities with stationary or explosive processes, but where definite comparisons cannot be made

easily.

7 Forecasting a weakly trending process

The aim of this section is to derive the distribution of the forecast errors when the data generating

process is given as in (1) and lemma 1 and the AR(1) model with an intercept is used as above

for estimation either by one-step or by multi-step OLS. The parameter estimates are then used to

forecast the series h steps ahead from an end-of-sample forecast origin yT . We use the following

notation: cT = h/T, YT (r) = T−1/2y[Tr] for r ∈ R+, and λ = eφ. Define ê∗c,T = h
−1/2
T êhT |T , with

the forecast error êh|T = yT+h − ŷT+h|T .

There are two ways to express the forecast error, either for fixed horizon as in the forecast

error taxonomy:

êh|T = −
(
ρ̂
{h}
T − ρ

{h}
T

)
τT −

(
ρ̂hT − ρhT

)
yT (i) slope estimation

−ρ{h}T (τ̂T − τT ) (ii) intercept estimation

+
∑h−1
j=0 ρ

j
T εT+h−j (iii) error accumulation

−
(
ρ̂
{h}
T − ρ

{h}
T

)
(τ̂T − τT ) (iv) second-order error
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or letting h increase with the sample size, and let c be constant so that hT = [cT ] as in Kemp

(1999). In the context of a weak trend, this latter forecasting technique seems the more interesting

since our aim is to derive the asymptotic distributions and to verify whether these can be used as

good approximations for small samples. We therefore define:

γT = T (ρ̂T − 1) ⇒ γ0, and πT = T 1/2 (τ̂T − τT ) ⇒ π0,

and similarly:

πh,T = h−1/2c
−1/2
T (τ̃h,T − τh,T ) ⇒ πc, and γh,T = c−1

T

(
ρ̃h,T − ρh,T

)
⇒ γc.

If we extend the definition of Kψ,φ (r) to cover r ∈ [0, 1 + δ] for some δ ∈ (0, 1)—so that the

forecast horizon h is always less than the sample size T , we can establish the following results

regarding the asymptotic distribution of the forecast errors.

Theorem 2 With the notations and assumptions above, and cT → c > 0 as T →∞:

ê∗c,T ⇒ c−1/2 [Kψ,φ (1 + c)− λcKψ,φ (1)− fφ (c)ψ]

−c−1/2

[{
ecγ0 − 1
γ0

− fφ (c)
}
ψ + (ecγ0 − 1)

π0

γ0

+ {ecγ0 − λc}Kψ,φ (1)
]
,

where c−1/2fφ (c)ψ is non-stochastic and the vectors (π0, γ0,Kψ,φ (1)) and [Kψ,φ (1 + c)−λcKψ,φ (1)]

are independent if ∀i ≥ 1, γ
(ε)
i = 0, which implies that σ = σε.

The direct multi-step forecast errors are given by:

ẽ∗c,T ⇒ c−1/2 [Kψ,φ (1 + c)− λcKψ,φ (1)− fφ (c)ψ]

−c1/2 [πc + γcKψ,φ (1)] ,

with the notation as above. The vectors (πc, γc,Kψ,φ (1)) and [Kψ,φ (1 + c) − λcKψ,φ (1)] are in-

dependent if the εt are innovations with respect to Ft−1. the σ-field generated by {yi, εi}i<t.
The forecast errors are asymptotically biased in both cases, and the biases are given by the

second line on the right-hand side of both expressions. (Proof in appendix).

By comparison, if we had not let h tend to infinity, the distributions of the forecast errors would

have been:

êh|T = h1/2

h−1/2
h−1∑
j=0

ρjT εT+h−j


−T−1/2

[{
ρ
{h}
T T 1/2 (τ̂T − τT )

}
+ h

{
h−1T

(
ρ̂hT − ρhT

)
YT (1)

}]
−hT−3/2

[{
h−1T

(
ρ̂
{h}
T − ρ

{h}
T

)}
ψ +

{
h−1T

(
ρ̂
{h}
T − ρ

{h}
T

)}{
T 1/2 (τ̂T − τT )

}]
,

and it would be possible to approximate each component individually for small samples. Similarly,

the multi-step forecast error can be decomposed into its components as in:

ẽh|T = h1/2

h−1/2
h−1∑
j=0

ρjT εT+h−j


−hT−1/2

{
h−1T 1/2 (τ̃h,T − τh,T ) + h−1T

(
ρ̃h,T − ρhT

)
YT (1)

}
.
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But, in both cases, the consistency of the estimators imply that the forecast errors are asymptoti-

cally normally distributed with mean zero and that they are the same for both methods.

Corollary 3 It is possible to separate the various impacts of the components defined as above

ê∗c,T ⇒ − c−1/2
[
ecγ0−1
γ0

− fφ (c)
]
ψ − c−1/2λc

{
ec(γ0−φ) − 1

}
Kψ,φ (1) (i) slope estimation

− c−1/2fφ (c)π0 (ii) intercept estimation

+ c−1/2 {K0,φ (1 + c)− λcK0,φ (1)} (iii) error accumulation

− c−1/2
[
ecγ0−1
γ0

− fφ (c)
]
π0 (iv) second-order error

and

ẽ∗c,T ⇒ − c1/2γcKψ,φ (1) (i) slope estimation

− c1/2πc (ii) intercept estimation

+ c−1/2 {K0,φ (1 + c)− λcK0,φ (1)} (iii) error accumulation

which show how different the behaviors of the slope estimation components are with respect to

c, the forecast horizon, especially the slope and intercept estimations. As c increases, the DMS

estimation components grow slowly (in c1/2), whereas it is more difficult to tell what happens to

IMS: it depends on the signs of γ0 and φ; the former is likely to be nonpositive if the latter so is,

and in this case the influence of the components is decreasing in c (the converse is also true for

positive φ). (Proof in appendix).

Notice that the various powers of the coefficient c in the decompositions in corollary ?? provide

the asymptotic rates of convergence. Yet, because of the nonlinearities, it is quite difficult to

determine it precisely. Notice, though, that all the IMS components exhibit the coefficient c−1/2,

whereas the DMS slope and intercept estimation impacts are products of c1/2. This implies that

the forecast error is a complex function of the horizon. Using a Taylor expansion of the functions

of c, the IMS forecast error becomes:

ê∗c,T ⇒ −c1/2 (γ0 − φ)Kψ,φ (1) (i)

−c1/2π0 (ii)

+c−1/2 {K0,φ (1 + c)− λcK0,φ (1)} (iii)

− 1
2c

3/2 (γ0 − φ) {1− (γ0 − 3φ)Kψ,φ (1)} (i)

− 1
2c

3/2φγ0 (ii) + (iv)

+Op
(
c5/2

)
.

We notice here that for short horizons (i.e. c close to zero), both forecasting techniques behave in

a similar way (terms in order Op
(
c1/2

)
). Additional components enter the iterated forecast error

as the horizon increases. This is why we turn to a Monte Carlo simulation in the next section to

clarify matters.
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Remark 4 Notice that Theorem 2 and Corollary 3 together imply that

Kψ,φ (1 + c)− λcKψ,φ (1) ≡ K0,φ (1 + c)− λcK0,φ (1) + fφ (c)ψ.

This can otherwise be derived directly.

8 Monte Carlo

In order to observe the validity of the weak trend approach, we now present the results from a Monte

Carlo simulation which compares the results derived analytically to those obtained from estimation

and forecasting over small samples of observations, here T = 25 and the forecast horizon varies

between h = 1 and h = 4. Simulation proves the only way to compare the actual distributions

of the statistics owing to their rather intricate expressions, involving many OU-d, or K, processes

Computations were carried through using OxEdit and the Ox programming language. Given the

non-stationary feature of the simulated data, the origin of the sample cannot be randomly drawn

from a common distribution, we therefore resort to setting it to zero for all replications.

Owing to the large number of parameters, it seems difficult to present a thorough assessment

of the distributional equivalence between small sample estimation, inference and forecasting prop-

erties and their weak trend asymptotic approximation, and we refer the reader to Chevillon (2004)

for a more complete comparison. Here, we resort to 3D graphs representing the ratios of the

small sample Monte Carlo estimates (appropriately scaled biases, t-test statistics and forecast er-

rors over 10,000 replications) over their asymptotic weak trend counterparts (2,500 replications for

K (1) processes and integrals); the horizontal axes refer to the drift parameter ψ, varying between

0 and 2, and to the distribution quartile. For each figure, we present six graphs for which the

moving average parameter θ takes values 0, −0.3 and −0.6 and the horizon h = 1 or 4. Altogether,

these figure produce a concise view of the approximation properties.

8.1 Estimation

The weak trend framework provides a good approximation to the small sample intercept bias as

figure 4 quadrant a shows: quartiles—between x = 0.1 and 0.9—are the same for the two when the

model is not misspecified for the error autocorrelation. The non-linearity that appears in this graph

and becomes more significant in the others is essentially caused by quartile values too close to zero

and which alter the ratios (they are removed when too large). From this we observe that if the

distribution is centered on zero in the absence of a drift, a positive value of the latter implies that

the bias distribution is shifted towards positive values. When estimating the multi-step parameter,

using DMS, the weak trend framework is as accurate (fig. 4 b), except for the lower tail and ψ

close to zero, in which case the ‘weak’ distribution is thinner tailed. If we progress downwards in

the figure and observe the graphs in the presence of a negative moving average component, then

the approximation is less accurate, but we notice that it is still reasonable for h = 4 as the ratio is

then still close to unity.
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Results for the slope bias are similar as we notice again on figure 5 that estimate ratios in a

well-specified model are close to unity. The unit root estimator is negatively biased, ratios for the

upper quartiles were truncated as denominators were almost zero. When θ < 0, the approximation

is again more valid at horizon 4 than for h = 1. The negative values of the ratios indicate that the

weak framework does not represent the strongly skewed distribution correctly as too much of the

interquartile range leads to a positive slope bias. By contrast lower tail approximations are very

accurate.

8.2 Inference

How do these fairly accurate bias representations translate into test statistics? We report in figures

6 and 7 the same ratios as before but now for the t test statistics under the null of no intercept and

under the true null. With respect to the previous figures, we have now included x = 0.01, 0.05,

0.95 and 0.99. This results in kinks in the surfaces for the uppermost quartiles, with the same

spike as before for biases close to zero. Ratios are now closer to 2 on average implying that the

asymptotic weak distribution does not exhibit fat enough tails. The main difference between the

two figures lies in the accuracy of the one-step and DMS estimators: the approximation is better

for the null of no intercept when h = 1 and for the true null when h = 4.

8.3 Forecasting

Forecast errors are the most complex of the Monte Carlo estimates as they combine results from the

two previous subsections. As expected, their approximation turns out the least accurate. Figure

8 presents the IMS forecast error ratios. These are only close to unity for low ψ and in the lower

tail. A magnified version of the h = 1 case is shown in the left-hand side column of fig. 9 and we

see that the most regular approximation actually corresponds to the presence of a negative moving

average of low absolute value (second row). Contrary to the IMS case, increasing the horizon does

not worsen the DMS ratios.

The reason for the approximation to be less valid for forecasting than in the previous subsec-

tions could lie in the vary large number of replications needed for an appropriate Monte Carlo

estimation. Indeed the asymptotic biases enter in the forecast error, yielding a higher degree of

sample variability.

9 Conclusions

In this paper, we have presented a method of approximation which aims at representing the highly

non-linear patterns of estimation biases and forecast errors which had been found in Chevillon

and Hendry (2004). For this purpose, we have introduced the concept of weak trend, allowing

the asymptotic behaviors of sample statistics to mimic the small sample interaction between a

stochastic and a deterministic trend, whereas in the traditional framework, the latter dominates.

Here by contrast, the effect of the trend falls in a continuum and can be tuned to reflect the finite
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sample behavior of the estimators, by letting the parameter k in τ = ψ/T k vary. We have focused

in the specific case where k = 1/2 so that the series is of order Op
(√

T
)

as a pure random walk.

We have shown that in this framework, most general random walk estimation results apply

when standard Brownian motions are replaced with drifting Ornstein-Uhlenbeck processes. This

allowed us to characterize the non-linear patterns exhibited by both estimators and forecasts.

Unfortunately, as in most cases of local asymptotics, it proves difficult to test for which framework—

strong or weak drift—is most relevant in an empirical example, but the use of multi-step t statistics

allows for a specification analysis and could, in the presence of serial correlation of the error process,

lead to testing which of the strong or weak trend framework is more appropriate. Yet, one of the

most interesting aspect of our framework lies in the interaction between the stochastic and the

deterministic trends and when it shows how differently the direct and iterated multi-step methods

differ as far as forecasting is concerned. We noticed that the components of the forecast errors as

derived in the taxonomy present opposite patterns with respect to the forecast horizon but that

it is not the case when the latter is small compared to the sample size. A Monte Carlo simulation

showed that the weak trend framework appropriately represents the behaviors of estimation biases

and specification test statistics in small samples. Yet the approximation is less valid for forecast

errors, but this may be due to a Monte Carlo variability and ought to be checked with a more

powerful processor.

The weak trend framework can be extended for τ =
∑k
k=k

ψk
T k

which we could combine with

the results from Phillips (1998) who show that a stochastically trending process can be represented

as a expansion of deterministic functions of time with random coefficients. This would provide an

expansion of the regression estimators.
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Figure 4: Ratios of the Monte Carlo values of the distribution of the small sample intercept bias over
its asymptotically corresponding ‘weak trend’ counterpart, for a sample of T = 25 observations,
10, 000 replications and varying ψ parameter and quantiles x.
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Figure 5: Ratios of the Monte Carlo values of the distribution of the small sample slope bias over
its asymptotically corresponding ‘weak trend’ counterpart, for a sample of T = 25 observations,
10, 000 replications and varying ψ paramater and quantiles.
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Figure 6: Ratios of the Monte Carlo values of the distribution of the small sample intercept t
test statistic (under the Null of no intercept) over its asymptotically corresponding ‘weak trend’
counterpart, for a sample of T = 25 observations, 10, 000 replications and varying ψ parameter
and quantiles x.
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Figure 7: Ratios of the Monte Carlo values of the distribution of the small sample intercept t test
statistic (under the true Null) over its asymptotically corresponding ‘weak trend’ counterpart, for
a sample of T = 25 observations, 10, 000 replications and varying ψ parameter and quantiles x.
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Figure 8: Ratios of the Monte Carlo values of the distribution of the small sample IMS forecast
error over its asymptotically corresponding ‘weak trend’ counterpart, for a sample of T = 25
observations, 10, 000 replications and varying ψ parameter and quantiles x.
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Figure 9: Ratios of the Monte Carlo values of the distribution of the small sample DMS forecast
error over its asymptotically corresponding ‘weak trend’ counterpart, for a sample of T = 25
observations, 10, 000 replications and varying ψ parameter and quantiles x.
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Appendices

A Proof of Theorem 1

Proofs of (ah)–(ch) are standard. We write the statistic (dh) as a functional of Xh,T on D [0, 1].

We first square T−1/2yt,T :

T−1y2
t,T = T−1

(
τh,T + ρh,T yt−h,T + wh,t

)2
= T−2

(
h−1∑
i=0

eiφ/T

)2

ψ2 + T−1e2hφ/T y2
t−h,T + T−1w2

h,t

+2T−3/2

(
h−1∑
i=0

e(i+h)φ/T

)
ψyt−h,T + 2T−3/2ψwh,t + 2T−1ehφ/T yt−h,Twh,t.

Summing over t, and letting T →∞ yield:

T−1
∑

yt−h,Twh,t ⇒ h

2

{
{Kψ,φ (1)}2 − 2φ

∫ 1

0

[Kψ,φ (r)]2 dr − h−1σ2
wh
− 2ψ

∫ 1

0

Kψ,φ (r) dr
}

=
h

2

{
{Kψ,φ (1)}2 − 2

∫ 1

0

[
ψKψ,φ + φK2

ψ,φ (r)
]
dr − h−1σ2

wh

}
,

whence the result, using (14) and (24).

B Proof of Lemma 3

As ψ → ±∞, we notice that

[ √
T (τ̃h,T − τh,T )

T
(
ρ̃h,T − ρh,T

) ]
⇒ hσ

 Q (fφ)
D (fφ)

0

 ,
if σ 6= 0, and

√
T (τ̃h,T − τh,T ) ⇒ 0 otherwise. Notice that the notation used is that of §5.3,

but no assumption is made here about a particular form of disturbances. The distribution of

{D (fφ)}−1Q (fφ) is given by Slutsky’s formula since
∫ 1

0
fφ (r) dr =

(
eφ − φ− 1

)
/φ2 for φ 6= 0 and∫ 1

0
f0 (r) dr = 1/2; and

D (fφ) = φ−4
(
eφ + 1

) [φ
2
(
eφ − 1

)
−
(
eφ + 1

)]
,

D (f0) =
1
12
,

Q (fφ) = φ−3

[
e2φ

2
− 2eφ + φ+

3
2

]
W (1)− φ−3

[
eφ − φ− 1

](∫ 1

0

(
eφr − 1

)
dW (r)

)
,

E [Q (fφ)] = 0,

Var [Q (fφ)] =
1
4
φ−7

[
e2φ − 4eφ + 2φ+ 3

] [
[φ− 2] e2φ + 4eφ − [φ+ 2]

]
,

Var [Q (f0)] = Var

[
1
3
W (1)− 1

2

∫ 1

0

rdW (r)
]

=
1
9
,
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since E
[∫ 1

0

∫ 1

0

(
eφr − 1

)
dW (r) dW (s)

]
=
∫ 1

0
E
[(
eφr − 1

)
dr
]

and hence:

[√
T (τ̃h,T − τh,T )

]
L→

ψ→∞
N

(
0, h2σ2 φ[e2φ−4eφ+2φ+3][[φ−2]e2φ+4eφ−[φ+2]]

[2(eφ+1)[φ
2 (eφ−1)−(eφ+1)]]2

)
,

and 1
4hσ

[√
T (τ̃h,T − τh,T )

]
L→

ψ→±∞
N (0, 1) , if φ=0,

1
hσ

[√
T (τ̃h,T − τh,T )

]
L→

ψ→±∞, then φ→∞
N (0, 1) ,

1
hσ
√
−2φ

[√
T (τ̃h,T − τh,T )

]
L→

ψ→±∞, then φ→∞
N (0, 1)

As regards the slope estimator, we first notice that

T
{
T−1

∑
yt−h,Twh,t

−1
2
e−hφ/T

[
h {Kψ,φ (1)}2 − 2hφ

∫ 1

0

[Kψ,φ (r)]2 dr − σ2
wh
− 2ψh

∫ 1

0

Kψ,φ (r) dr
]}

⇒ −hψ
(
hψ

2
+ σW (1)

)
so that, whereas T

(
ρ̃h,T − ρh,T

)
→

ψ→∞
0,

T 2
(
ρ̃h,T − ρh,T

)
→

ψ→∞

h2

φ−4 (eφ + 1) [φ (eφ − 1)− 2 (eφ + 1)]

C Proof of Theorem 2

Re-write the forecast error as

h−1/2êh|T = c
−1/2
T YT (1 + cT )− h−1/2ρ̂

{h}
T τ̂T − c

−1/2
T ρ̂hTYT (1)

= c
−1/2
T YT (1 + cT )− c

−1/2
T ρhTYT (1)− h−1/2ρ

{h}
T τT

−h−1/2
(
ρ̂
{h}
T τ̂T − ρ

{h}
T τT

)
− c

−1/2
T

(
ρ̂hT − ρhT

)
YT (1) .

Notice that ρhT

T = ehTφ/T = ecTφ, and that h−1/2ρ
{h}
T τT = T−1 fφ(cT )

fφ(1/T )c
−1/2
T ψ, hence

ê∗c,T = c
−1/2
T

(
YT (1 + cT )− ecTφYT (1)

)
− 1/T
fφ (1/T )

fφ (cT ) c−1/2
T ψ − c

−1/2
T T−1/2

(
ρ̂
{h}
T τ̂T − ρ

{h}
T τT

)
−c−1/2

T

((
1 + T−1γT

)h
YT (1)− ecTφYT (1)

)
,

where γT = T (ρ̂T − 1) ⇒ γ0 as above. And then:

ρ̂hT =
(
1 + T−1γT

)h
=
(
1 + h−1cT γT

)h
= eh log(1+h−1cT γT ) ⇒ ecγ0 .

Similarly:(
ρ̂
{h}
T τ̂T − ρ

{h}
T τT

)
=

[(
h−1∑
i=0

{
elog(1+h

−1cT γT )
}i)

τ̂T −

(
h−1∑
i=0

eiφ/T

)
τT

]

=
[
flog(1+h−1cT γT ) (h)
flog(1+h−1cT γT ) (1)

(
τT + T−1/2πT

)
− fφ (h/T )
fφ (1/T )

τT

]
= T 1/2

[
cT
fh log(1+h−1cT γT ) (1)
flog(1+h−1cT γT ) (1)

− fφ (h/T )
fφ/T (1)

]
ψ

+T 1/2cT
fh log(1+h−1cT γT ) (1)
flog(1+h−1cT γT ) (1)

πT ,
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and hence

T−1/2
(
ρ̂
{h}
T τ̂T − ρ

{h}
T τT

)
⇒
[
ecγ0 − 1
γ0

− fφ (c)
]
ψ + (ecγ0 − 1)

π0

γ0

.

Letting λ = eφ,

ê∗c,T = c
−1/2
T (YT (1 + cT )− λcT YT (1))

−c−1/2
T

{
T−1

fφ (T−1)
fφ (cT ) +

[
cT
fh log(1+h−1cT γT ) (1)
flog(1+h−1cT γT ) (1)

− fφ (h/T )
fφ/T (1)

]}
ψ

−c1/2T

fh log(1+h−1cT γT ) (1)
flog(1+h−1cT γT ) (1)

πT

−c−1/2
T

(
eh log(1+h−1cT γT )YT (1)− λcT YT (1)

)
.

By contrast the multi-step forecast error is much simpler:

ẽh|T = yT+h − ỹT+h|T = (τh,T − τ̃h,T ) +
(
ρhT − ρ̃h,T

)
yT +

h−1∑
j=0

ρjT εT+h−j ,

and if we let h grow with T ,

ẽ∗c,T = h
−1/2
T T 1/2

[
YT (1 + cT )− ρ̃h,TYT (1)

]
− h

−1/2
T τ̃h,T

= c
−1/2
T

[
YT (1 + cT )− ρh,TYT (1)

]
− T−1

fφ (T−1)
fφ (cT ) c−1/2

T ψ − c
1/2
T h−1T

(
ρ̃h,T − ρh,T

)
YT (1)

−c1/2T h−1T 1/2 (τ̃h,T − τh,T ) ,

and hence the results. Independence follows from uncorrelatedness and Gaussianity.

D Proof of Corollary 3

Recall that

êh|T = −
(
ρ̂
{h}
T − ρ

{h}
T

)
τT −

(
ρ̂hT − ρhT

)
yT

−ρ{h}T (τ̂T − τT )

+
∑h−1
j=0 ρ

j
T εT+h−j

−
(
ρ̂
{h}
T − ρ

{h}
T

)
(τ̂T − τT ) .

and h−1/2
(
ρ̂
{h}
T − ρ

{h}
T

)
τT = h−1/2T−1/2

∑h−1
i=0

(
ρ̂iT − ρiT

)
ψ. Moreover

T−1
h−1∑
i=0

(
ρ̂iT − ρiT

)
⇒ ecγ0 − 1

γ0

− fφ (c) ,

h−1/2
(
ρ̂
{h}
T − ρ

{h}
T

)
τT ⇒ c−1/2

[
ecγ0 − 1
γ0

− fφ (c)
]
ψ.

Similarly, h−1/2ρ
{h}
T (τ̂T − τT ) = T 1/2h−1/2T−1

(∑h−1
i=0 ρ

i
T

){
T 1/2 (τ̂T − τT )

}
and

h−1/2ρ
{h}
T (τ̂T − τT ) ⇒ c−1/2fφ (c)π0.
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Finally
(
ρ̂
{h}
T − ρ

{h}
T

)
(τ̂T − τT ) =

∑h−1
i=0

(
ρ̂iT − ρiT

)
(τ̂T − τT ) and

h−1∑
i=0

(
ρ̂iT − ρiT

)
(τ̂T − τT ) =

h−1∑
i=0

[
i (ρ̂T − ρT ) + op

(
T−1

)]
(τ̂T − τT )

= T−3/2h (h− 1)
2

T (ρ̂T − ρT )T 1/2 (τ̂T − τT ) + op

(
T−3/2

)
,

so that

h−1/2
(
ρ̂
{h}
T − ρ

{h}
T

)
(τ̂T − τT ) ⇒ c−1/2

[
ecγ0 − 1
γ0

− fφ (c)
]
π0.

The results follow.

E Principal notations

yt,T = τT + ρT yt−1,T + εt, (t, T = 1, 2, ...)

τT =
ψ

T k
and k = 1/2

ρT = eφ/T and λ = eφ

γ
(ε)
i = Cov [εt, εt−j ]

uT =
∑T

j=1
εj and σ2 = lim

T→∞
T−1E

[
u2
T

]
fφ (·) : r → eφr − 1

φ
and f0 (r) = r

Kψ,φ (r) = ψfφ (r) + σ

∫ r

0

eφ(r−s)dW (s)

ρ
{h}
T =

h−1∑
i=0

ρiT

wh,t =
h−1∑
j=0

ρiT εt−j and σ2
wh

= lim
T→∞

T−1E

[
T∑
t=h

w2
h,t

]

vh,[Tr] =
[Tr]∑
i=h

wh,i and σ2
h = lim

T→∞
T−1E

[
v2
h,T

]
$h =

1
2
(
1− σ2

ε/σ
2
)
−
(
hσ2

)−1

[
h−1∑
i=1

(h− i) γ(ε)
i

]
cT = h/T ⇒ c

h−1/2c
−1/2
T (τ̃h,T − τh,T ) ⇒ πc, and γh,T = c−1

T

(
ρ̃h,T − ρh,T

)
⇒ γc
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