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We propose a Bayesian approach to Local Projections that optimally addresses
the empirical bias-variance tradeoff inherent in the choice between VARs and LPs.
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informative priors, thus estimating impulse response functions potentially better
able to capture the properties of the data as compared to iterative VARs. In doing
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1 Introduction

Local Projections (LP, Jordà, 2005), have rapidly become one of the main tools in

macroeconomics to study the propagation of structural shocks (see discussion in Ramey,

2016). LPs are closely related to direct multi-step estimation in forecasting, and consist

of estimating a series of predictive regressions at different horizons of a variable of interest

on a set of predictors. The coefficients of the different regressions are then ‘collated’

across the horizons to form Impulse Response Functions (IRFs). Compared to IRFs

obtained from estimated Vector Autoregressions (VARs), LPs are semi-parametric in

nature, and do not assume a specific model. As a consequence, they potentially allow

for more flexibility. This flexibility, however, comes at the cost of higher variance and

inefficiency of the estimator, relative to VARs.

From a classical perspective, choosing between iterated (VAR) and direct (LP) meth-

ods for either structural analysis or forecasting involves an empirical trade-off between

bias and estimation variance: iterated methods are more efficient, but are more prone

to bias if the model is misspecified.1 Conversely, direct methods suffer from higher es-

timation uncertainty due to serially correlated residuals and to over-parametrisation in

small samples where degrees of freedom quickly dry up at longer horizons. In macroe-

conomic applications where time-series are short and strongly autocorrelated, the gains

afforded by the flexibility of direct methods can be outweighed by the higher estimation

uncertainty both in structural applications (see Kilian and Kim, 2011, Brugnolini, 2018

and Li et al., 2021) and in forecasting (see Marcellino et al., 2006, Pesaran et al., 2011,

and Chevillon, 2007 for a literature review).

In this paper we propose a Bayesian Quasi-Maximum Likelihood approach to local

projections, with hierarchical informative priors, that optimally addresses this empirical

bias-variance trade-off. Intuitively, this methodology, that we refer to as Bayesian Local

Projections (BLP), regularises the estimates of LP coefficients through informative pri-

ors, while hierarchical modelling allows the data structure to select the optimal degree

1A VAR model is likely to be misspecified along a number of dimensions, e.g. lag order, omitted
variables, unmodelled moving average components, time-varying parameters, heteroscedastic residuals,
and non-linearities, among others (see discussion in Braun and Mittnik, 1993; Schorfheide, 2005).
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of departure form the priors at each horizon.

When conducting Bayesian inference on the local projection coefficients there is po-

tentially a tension between the non-parametric nature of the LP approach, and the

parametric view that is inherently Bayesian. In LP, the object of inference is the pre-

diction of the variables of interest, conditional on their past realisations, and possibly

on a measure of a structural shock. Hence, rather than on the true parameters of the

process generating the data, LPs conduct inference on the coefficients of the best h-step

ahead conditional linear predictor, under squared loss.

Bayesian estimation generally requires the specification of a parametric model, i.e.

of a joint probability distribution – often Gaussian in macroeconomic applications –, for

both the observables and the parameters. The posterior distribution is then obtained as

the distribution of the parameters after having observed the data, and is determined by

the Bayes’ rule. This is proportional to the likelihood times the prior – i.e. the product

of the distribution of the observed data (sampling distribution/likelihood function) times

the distribution of the parameters before any data is observed (prior distribution).

In a similar vein to LP, to conduct inference on the BLP coefficients we follow a

quasi-maximum likelihood approach, and at each horizon specify a Gaussian likelihood

function for the data, in conjunction with different specifications for the priors. In other

words, also for BLP the object of interest are the pseudo-true autoregressive coefficients

of a ‘misspecified model’, i.e. a of an h-step ahead regression model.

Because of the serial correlation in the residuals of the h-step-ahead regressions,

specifying a Gaussian likelihood leads to underestimating the true variance; a problem

we deal with using a sandwich estimator for the variance. This approach is grounded

in the results of Huber (1967) and White (1982) who showed that in in these cases, the

sampling distribution of the MLE is asymptotically centred around the Kullback-Leibler

divergence-minimising pseudo-true parameter value and, to first asymptotic order, it is

Gaussian with sandwich covariance matrix.2 This result extends to the asymptotic

2In large samples, and under more stringent regularity conditions, the likelihood function converges
to a Gaussian distribution, with mean at the MLE and covariance matrix given by the usual MLE
estimator for the covariance matrix. This implies that conditioning on the MLE and using its asymptotic
Gaussian distribution is, in large samples, approximately equivalent to conditioning on all the data (see
discussion in Sims, 2010). Similarly in Bayesian contexts, in large samples the likelihood dominates
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behaviour of the posterior in misspecified parametric models. Following this intuition,

Müller (2013) shows that a superior mode of inference is obtained in these cases by

using an ‘artificial’ Gaussian posterior that is centred at the MLE with a sandwich

covariance matrix.3 In this work, we follow this approach, and conduct inference on the

BLP coefficients based on artificial Gaussian posteriors with a HAC covariance matrix at

each horizon. Interestingly, this also matches the frequentist approach of Jordà (2005).

A central problem in Bayesian inference is how to elicit prior probability distributions

that summarise information on the parameters that is available before any sample is

observed. In general, for BLP as well as for VARs, such prior information can be

either contained in samples of past data (‘data-based’ prior), or it can be elicited from

introspection, casual observation, and theoretical models (‘nondata-based’ prior). If no

prior information is available, a researcher can resort to ‘non-informative’, or Jeffreys’

priors (Geisser, 1965; Tiao and Zellner, 1964).4 Under non-informative priors, the BLP

and LP estimators coincide.

We discuss BLPs under two different priors specifications. The first one is a nondata-

based statistical prior based on the ‘Minnesota’ priors of Sims and Zha (1998). Min-

nesota priors, widely used for Bayesian VARs, assume that macroeconomic time series

can be a-priori represented as independent random walks or white noise processes.5

These can be readily generalised to h-step-ahead regression models, since for both ran-

dom walk and white noise processes the h-step-ahead and 1-step-ahead conditional ex-

pectations coincide. We refer to this prior as a random-walk (or RW-based) BLP prior.

The second type of prior is instead data-based, and follows from the widely held belief

the prior, leading to a Gaussian posterior centred at the MLE and with covariance matrix equal to the
inverse of the second derivative of the log-likelihood.

3Müller (2013) shows that, conversely, posterior beliefs constructed from a misspecified likelihood
such as the one discussed here are unreasonable, in the sense that they lead to inadmissible decisions
about the pseudo-true values.

4Jeffreys priors are proportional to the square root of the determinant of the Fisher information
matrix, and are derived from Jeffreys’ ‘invariance principle’, meaning that the prior is invariant to
re-parameterization (see Zellner, 1971). These priors are designed to extract the maximum amount
of expected information from the data. They maximise the difference (measured by Kullback-Leibler
distance) between the posterior and the prior when the number of samples drawn goes to infinity.

5Minnesota priors incorporate a stylised representations of the DGP that is commonly accepted for
economic variables. Hence they are ‘statistical priors’ and do not incorporate the investigator’s ‘sub-
jective’ beliefs. A such, they help in making the likelihood-based description of the data communicable
across researchers with potentially diverse prior beliefs.
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that the joint dynamic properties of economic time series are well described in first ap-

proximation, and especially at short horizons, by a VAR. This prior can be formulated

as a Normal-Inverse-Wishart (NIW) prior centred around the coefficients of a VAR that

is estimated on a pre-sample and iterated at the relevant horizon (VAR-based BLP prior

henceforth).

In determining the informativeness of the priors, we adopt a hierarchical approach,

and define a second level of prior distributions for the parameters that regulate the

tightness of prior beliefs (hyperpriors).6 In doing so, we extend the methodology of

Giannone et al. (2015), and treat the overall informativeness of the priors (either RW-

or VAR-based) as an additional model parameter that is estimated at each horizon

as the maximiser of the marginal data likelihood, i.e. of the distribution of the data

conditional on the hyperparameters, once the model coefficients have been integrated

out. We specify the variance of the hyperprior at each horizon as to reflect the intuition

that at longer horizons the true DGP is more likely to deviate from the stylised data

representation incorporated in the priors. An interesting by-product of this approach is

that, in the case of the VAR-based priors, the posterior mean of BLP coefficients can be

seen as an optimally weighted combination of VAR and LP coefficients at each forecast

horizon/projection lag.

We study the behaviour of BLP in three settings. First, we compare empirical IRFs

estimated on quarterly US data with LP, a Bayesian VAR with standard Normal-Inverse

Wishart priors, and BLP with both a RW-based and a VAR-based prior. Our analysis

finds that the data tends to deviate from the stylised priors at longer horizons, resulting

in an optimal level of prior shrinkage that is a monotonic non-decreasing function of the

forecast horizon, or projection lag. BLP IRFs tend to imply richer adjustment dynamics

following macroeconomic shocks than VAR IRFs, while retaining comparable estimation

uncertainty. BLP-IRFs estimated with RW-based and VAR-based priors lead to very

similar results.

Second, we evaluate BLP’s ability to recover accurate response functions in a simu-

6This method is also known in the literature as the Maximum Likelihood Type II (ML-II) approach
to prior selection (Berger, 1985; Canova, 2007).
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lated environment where we can control the degree of empirical model misspecification

relative to a well defined benchmark. The reference model is a variant of the DSGE in

Justiniano et al. (2010). We compare DSGE-implied dynamic responses to a monetary

policy shock with those estimated with standard LP, BLP with a VAR-based prior,

and a Bayesian VAR with standard NIW priors, all misspecified to varying degrees. In

dealing with misspecification, BLP outperform VARs, and are as robust as LP when

abstracting from the estimation uncertainty of the latter.

Finally, we test the framework designed to estimate BLP as a direct forecasting

method. We design a multivariate recursive forecasting exercise for quarterly US vari-

ables and compare the three methods in terms of both point and density forecasts. BLP

out-of-sample forecasts are as accurate as those of a Bayesian VAR, and produce com-

parable predictive densities. Overall, our analysis shows that BLPs are competitive in

small samples and misspecified models, and that they outperform LPs for what concerns

estimation uncertainty while retaining equivalent degrees of flexibility.

The paper is organised as follows. In the reminder of this section we discuss the

related literature. In Section 2, we introduce Bayesian Local Projections. Section 3

discusses the choice of the priors specifications and estimation. In Section 4, we present

the BLP IRFs in an empirical setting using quarterly US data under different priors,

and we compare them with those estimated with frequentist LP and a Bayesian VAR

with standard priors. We evaluate the the BLP method in a simulated environment in

Section 5, and in a forecasting exercise is in Section 6. Section 7 concludes. Additional

results are reported in the Appendix.

Related Literature Our paper sits at the intersection between the Bayesian VAR

and the Local Projection literatures and merges the non-parametric LP intuition of

Jordà (2005) with the Bayesian parametric framework of BVARs (see, among many

others contribution, Sims, 1980; Doan et al., 1983; Sims and Zha, 1998). There are

several excellent books and survey articles on BVARs. Canova (2007) provides a book

treatment of VARs and BVARs in the context of the methods for applied macroeconomic
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research. Del Negro and Schorfheide (2011) have a deep and insightful discussion of

BVAR with a broader focus on Bayesian macroeconometrics and DSGE models. Koop

and Korobilis (2010) propose a discussion of Bayesian multivariate time series models

with an in-depth discussion of time-varying parameters and stochastic volatility models.

Geweke and Whiteman (2006) and Karlsson (2013) provide a detailed survey with a

focus on forecasting with Bayesian Vector Autoregression. Alternatively, one can refer

to Miranda-Agrippino and Ricco (2019) that adopt a similar notation to this paper.

Close to the spirit of this paper is the ‘Smooth Local Projection’ approach of Bar-

nichon and Brownlees (2019) that propose an alternative method to LP regularisation

based on classic regularisation techniques. While the methodology is different, their

approach is motivated by the the same intuition as our work. Whether one approach

or the other may be used would depend on the application at hand and the researcher’s

preference. Along similar lines, Barnichon and Matthes (2014) have suggested a method

to approximate IRFs using Gaussian basis functions.

Our approach, while presented in a Bayesian language, can also be understood from

the alternative frequentist interpretation provided by the theory of ‘regularisation’ of

statistical regressions (see, for example, Chiuso, 2015). In fact, the use of priors to

inform estimation is equivalent to a penalised regression, as it would be the case in a

Ridge or Lasso regression (see discussion in De Mol et al., 2008).

Our methodology also builds on the approach of Giannone et al. (2015) to estimating

the optimal priors’ tightness, and extends it to regression models estimated at different

horizons. In taking a Bayesian approach to address the trade-offs between VARs and

LPs, our paper provides a practical solution in finite samples to some of the problems

discussed in the literature on Local Projections (see, for example Kilian and Kim, 2011

and Brugnolini, 2018). Plagborg-Møller and Wolf (2021) prove the equivalence of the LP

and VAR estimator asymptotically, highlighting the empirical nature of the trade-offs

that arise when choosing between the two methods.

Finally, this paper is also related to the forecasting literature, where the distinction

between LP and VAR-based response functions corresponds to the dichotomy between

direct and iterated forecasts (see Marcellino, Stock and Watson, 2006; Pesaran, Pick and
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Timmermann, 2011; Chevillon, 2007, among others). While direct forecasts are theoret-

ically more appealing because of the added robustness to misspecification, empirically

Marcellino et al. (2006) show that iterated forecasts generally outperform direct ones,

particularly when long lag lengths are allowed. Direct forecasts tend to have higher

sample MSFEs than iterated forecasts, and become increasingly less desirable as the

forecast horizon lengthens.

An early application of BLP to the study of monetary policy shocks has appeared

in Miranda-Agrippino and Ricco (forthcoming) together with the replication codes. Ho,

Lubik and Matthes (2021) include BLP alongside other models in prediction pools de-

signed for the estimation of robust impulse response functions. The BLP methodology

is also distributed within the econometric package of Canova and Ferroni (2020).

2 A Bayesian Approach to Local Projections

In this section we introduce the BLP machinery. First we provide the intuition behind

our approach by analysing the relationship between VAR-IRFs and LP-IRFs in a sim-

plified setting. We then discuss our Bayesian (Quasi-)Maximum Likelihood approach to

estimation, and derive the BLP estimator under conjugate priors. It is worth stressing

that while our discussion is proposed in a multivariate setting, it encompasses univariate

specifications as a special case.

2.1 Direct vs Iterated Forecasts and Response Functions

Iterative methods, such as VARs, recover forecasts and impulse responses by iterating

up to the relevant horizon the coefficients of a system of one-step-ahead reduced-form

equations

yt+1 = Byt + εt+1 εt ∼ N (0,Σε) , (1)

where yt = (y1
t , . . . , y

n
t )′ is a (n × 1) random vector of macroeconomic variables, B is

an n-dimensional matrix of coefficients, and εt is an (n × 1) vector of reduced-form
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innovations, or one-step-ahead forecast errors.7

Conversely, direct methods such as LPs recover these objects from the coefficients of

a set of linear regressions estimated independently at each horizon and of the form

yt+h = B(h)yt + ε
(h)
t+h , ε

(h)
t+h ∼ N

(
0,Σ(h)

ε

)
∀ h = 1, . . . , H . (2)

Being a combination of one-step-ahead forecast errors, the projection residuals ε
(h)
t+h are

serially correlated and heteroscedastic (Jordà, 2005).

The horizon-h impulse response functions from the two methods are given by

IRFVAR
h = BhA0 , (3)

IRFLP
h = B(h)A0 , (4)

where A0 identifies the mapping between the structural shocks ut and the reduced-form

one-step-ahead forecast errors, i.e. εt = A0ut.
8 Assuming the VAR to be the true

description of the data generating process, the coefficients and residuals of an iterated

VAR can be readily mapped into those of LP, yielding

B(h) ←→ B(VAR,h) = Bh , (5)

ε
(h)
t+h ←→ ε

(VAR,h)
t+h =

h∑
j=1

Bh−jεt+h . (6)

Three observations are in order. First, conditional on the underlying DGP being the

linear model in Eq. (1), and abstracting from estimation uncertainty, the IRFs computed

with the two methods should coincide (Eq. 5, see also Plagborg-Møller and Wolf, 2021).

Second, as shown by Eq. (6), conditional on the linear model being correctly specified,

LPs are bound to have higher estimation variance due to (strongly) autocorrelated

7To simplify the notation, we omit deterministic components from Eq. (1), and consider a simple
VAR(1). However, this is equivalent to a VAR(p) written in VAR(1) companion form.

8We frame the discussion in terms of impulse response functions, but it is understood that aside from
considerations relative to the identification of A0, this is equivalent to comparing forecasts produced
under the two methods.
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residuals.9 Third, given that for h = 1 VARs and LPs coincide, the identification

problem is identical for the two methods. In other words, given an external instrument

or a set of theory-based assumptions, the way in which the A0 matrix is derived from

either VARs or LPs coincides. The map in Eqs. (5-6) provides a natural bridge between

the two empirical specifications.

2.2 A Likelihood Function for LPs

Horizon-h LP-IRFs obtain from the OLS estimates, denoted B̂
(h)
1 , of the coefficients of

the linear regression

yt+h = C(h) +B
(h)
1 yt + ...+B

(h)
p̃ yt−(p̃+1) + ε

(h)
t+h , ∀ h = 1, . . . , H , (7)

where, in principle, p̃ may vary across horizons. For ease of exposition, in what follows

we fix p̃ = p ∀ h = 1, . . . , H. It is well known that under the assumption of Gaussianity

of the projection residuals, i.e. if ε
(h)
t+h ∼ i.i.d.N

(
0,Σ

(h)
ε

)
, and conditional on the first p

observations, the OLS estimator of the regression model in Eq. (7) coincides with the

MLE of the conditional likelihood (see e.g. Hamilton, 1994).10 This observation allows

us to think of the OLS LP estimator as equivalent to the MLE for Gaussian likelihood

function.

As noted, however, the residuals ε
(h)
t+h in Eq. (7) are a combination of one-step-

ahead forecast errors, and are thus serially correlated and heteroscedastic. Therefore,

a Gaussian likelihood function with i.i.d. errors for the horizon h regression model

is misspecified, and the estimator should instead be thought of as a Quasi-Maximum

Likelihood estimator (see White, 1994).11 Huber (1967) and White (1982) show that,

asymptotically, in such misspecified models the sampling distribution of the MLE is

9Most macroeconomic variables are close to I(1) and even I(2) processes. Hence LP residuals are
likely to be strongly autocorrelated.

10In the case in which the DGP were a correctly specified Gaussian linear model for h = 1, ε
(h)
t+h

would be a Gaussian MA, and hence a Gaussian process itself.
11For example, if we believed the data generating process to be a VAR of order p, the LP regressions

would have to be specified as ARMA(p, h − 1) regressions. Their coefficients could be then estimated
by combining informative priors with a fully specified likelihood (see Chan et al., 2016). If, however,
the VAR(p) were to effectively capture the DGP, it would be wise to discard direct methods altogether.
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centred on the Kullback-Leibler divergence-minimising pseudo-true parameter value and,

to first asymptotic order, it is Gaussian with sandwich covariance matrix. We use this

observation to characterise our proposed Bayesian framework for Local Projections. In

fact, we will be thinking of the likelihood function of the regression model in Eq. (7)

as the likelihood of a misspecified auxiliary model. Hence, and in the spirit of LP, the

object of interest will not be the ‘true parameters’ of the DGP, but rather the pseudo-

true parameters of a ‘misspecified model’, i.e. of the h-step ahead regression model.

This observation is important because it allows us to formally introduce priors for

the LP coefficients. The key advantage of defining an auxiliary (albeit misspecified)

Gaussian likelihood at each horizon is that, as it is well known, the intuition of Huber

(1967) and White (1982) extends to the asymptotic behaviour of the posterior in mis-

specified parametric models. In large samples the likelihood dominates the prior, leading

to a Gaussian posterior centred at the MLE and with covariance matrix equal to the

inverse of the second derivative of the log-likelihood. Formalising this intuition, Müller

(2013) shows that posterior beliefs constructed from a misspecified likelihood such as

the one discussed here are unreasonable, in the sense that they lead to inadmissible

decisions about the pseudo-true values, and proposes as a superior mode of inference –

i.e. of asymptotically uniformly lower risk –, based on an artificial Gaussian posterior

centred at the MLE with a sandwich covariance matrix. We use this approach for BLP,

and specify an artificial posteriors with a HAC covariance matrix. As noted, this also

matches the frequentist approach of Jordà (2005) where an HAC-corrected estimator is

used to account for the serial correlation of the LP residuals.

2.3 Conjugate Prior Distributions

While many different prior distributions are possible in principle, having specified a

Gaussian likelihood makes the choice of conjugate priors from the Normal-inverse Wishart

(NIW) family particularly convenient.

For each horizon-h, the model in Eq. (7) can be rewritten in compact form as

y(h) = xB(h) + e(h), (8)
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where B(h) ≡ [B
(h)
1 , . . . B

(h)
p , C(h)]′ is a k×n matrix, with k = np+1, and the (T −h)×n

matrices y(h) and e(h) and the (T − h)× k matrix x are defined as

y(h) =


y′1+h

...

y′T

 , x =


x′1
...

x′T−h

 , e(h) =


ε

(h)′
1+h

...

ε
(h)′
T

 , (9)

where x′t ≡
(
y′t . . . y′t−p+1 1

)
.

Under the assumption of i.i.d. residuals, i.e. ε
(h)
t+h ∼ i.i.d. N (0,Σ

(h)
ε ) , the Gaussian

likelihood, conditional on the parameters and on the first p observations, takes the

following form

p
(
y1:(T−h)|B(h),Σ(h)

ε , y1−p:0
)

=
1

(2π)(T−h)n/2
|Σ|−(T−h)/2

× exp

{
−1

2
tr
[
Σ(h)
ε

−1
Ŝ(h)

]}
× exp

{
−1

2
tr

[
Σ(h)
ε

−1
(
B(h) − B̂(h)

)′
x′x
(
B(h) − B̂(h)

)]}
, (10)

where tr denotes the trace operator, B̂(h) is the maximum-likelihood estimator (MLE)

of B(h), and Ŝ(h) the matrix of sums of squared residuals, i.e.

B̂(h) = (x′x)−1x′y(h), Ŝ(h) =
(
y(h) − xB̂(h)

)′ (
y(h) − xB̂(h)

)
. (11)

For each horizon-h regression model we define a generic Inverse-Wishart prior for

the variance of the projection residuals, and a conditionally Gaussian prior for the LP

coefficients, as follows

Σ(h)
ε ∼ IW

(
Ψ

(h)
0 , d

(h)
0

)
, (12)

β(h) | Σ(h)
ε ∼ N

(
β

(h)
0 ,Σ(h)

ε ⊗ Ω
(h)
0

)
, (13)

where
(

Ψ
(h)
0 , d

(h)
0 , β

(h)
0 ,Ω

(h)
0

)
are the priors’ parameters, typically functions of a lower

dimensional vector of hyperparameters γ(h). d
(h)
0 and Ψ

(h)
0 denote, respectively, the de-
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grees of freedom and the scale of the prior Inverse-Wishart distribution for the variance-

covariance matrix of the residuals. β
(h)
0 ≡ vec

(
B(h)

)
where B(h) ≡

[
B

(h)
1 , . . . , B(h)

p , C(h)
]′

is the prior mean of the LP coefficients, and Ω
(h)
0 acts as a prior on the variance-

covariance matrix of the regressors.

The posterior distribution for the BLP coefficients can then be obtained by mul-

tiplying the priors by the likelihood of the auxiliary model in Eq. (10), where the

autocorrelation of the projection residuals is not taken into account (see Kadiyala and

Karlsson, 1997).

Conditional on the data, the posterior distribution takes the following form

Σ(h)
ε | y ∼ IW

(
Ψ(h), d

)
(14)

β(h) | Σ(h)
ε , y ∼ N

(
β̃(h),Σ(h)

ε ⊗ Ω(h)
)
, (15)

where d = d
(h)
0 + (T − h) and

Ω(h) =
(

Ω
(h)
0

−1
+ x′x

)−1

,

β̃(h) ≡ vec
(
B

(h)
)

= vec

(
Ω(h)

((
Ω

(h)
0

)−1

B(h) + x′xB̂(h)

))
, (16)

Ψ(h) = B̂(h)′x′xB̂(h) + B(h)′
(

Ω
(h)
0

)−1

B(h) + Ψ
(h)
0

+
(
y(h) − xB̂(h)

)′ (
y(h) − xB̂(h)

)
−B

(h)′
((

Ω
(h)
0

)−1

+ x′x

)
B

(h)
,

where B
(h) ≡

[
B

(h)

1 , . . . , B
(h)

p , C
(h)
]′

.

It is important to observe that not having explicitly modelled the autocorrelation

of ε
(h)
t+h has two important advantages. First, the NIW priors are conjugate, hence the

posterior distribution is of the same Normal inverse-Wishart family as the prior prob-

ability distribution. Second, the Kronecker structure of the standard macroeconomic

priors that allows for SURE is preserved.12 These two important properties make the

12Preserving the symmetric structure that results in the Kronecker product is not strictly necessary,
but it is helpful from a computational prospective. Carriero, Clark and Marcellino (2019) and Chan
(2019) discuss this point and provide efficient computational approaches to implement asymmetric
priors that do not preserve the VAR Kronecker structure. Our approach can be easily generalised to
asymmetric priors.
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estimation analytically and computationally tractable.

However, as noted, this comes at the cost of underestimating the true variance. The

shape of the true likelihood is asymptotically Gaussian and centred at the MLE, but has

a different (larger) variance than the misspecified posterior distribution in Eqs. (14-15).

This implies that if one were to conduct inference about the horizon-h responses from

the misspecified posterior distribution in Eq. (15), one would be underestimating the

variance albeit correctly capturing the mean of the distribution of the regression coeffi-

cients. As discussed, the solution to this issue is provided by Müller (2013), and requires

‘correcting’ the variance by means of a sandwich estimator. Hence, and similarly to the

frequentist practice, we conduct inference on β(h) by replacing the original posterior with

an artificial Gaussian posterior that is centred at the MLE but with a HAC-corrected

covariance matrix, as follows:

Σ
(h)
ε,HAC |y ∼ IW

(
Ψ

(h)
HAC, d

)
, (17)

β(h) | Σ
(h)
ε,HAC, y ∼ N

(
β̃(h),Σ

(h)
ε,HAC ⊗ Ω(h)

)
, (18)

where Ψ
(h)
HAC = Ψ(h) +

∑h−1
j=1

[
1− j

h

] (
Γ̂

(h)
j + Γ̂

(h)′
j

)
and Γ̂

(h)
j is the sample autocovariance

of the projection residuals at horizon h. This allows us to remain agnostic about the

source of model misspecification as in Jordà (2005). A similar adjustment is used for

the prior scale of the Inverse-Wishart distribution in Eq. (12) (see Section 3.3).

3 Informative Priors for LPs

3.1 Nondata-based Minnesota-type Priors

A possible formulation for the prior mean of the LP coefficients is obtained by general-

ising the standard Minnesota-type priors commonly used in empirical macroeconomics

in the context of Bayesian VARs (Litterman, 1980, 1986; Kadiyala and Karlsson, 1997).

While not motivated by economic theory, these are computationally convenient priors,

and formalise the intuition that most macroeconomic time series are well approximated
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by an independent random walk with drift. Hence, this prior ‘centres’ the distribution

of the coefficients in B(h) at a value that implies an independent random-walk behaviour

for all the elements in yt

yj,t = c+ δjyj,t−1 + εj,t j = 1, . . . , n. (19)

Banbura et al. (2010) suggested setting δj to one or zero, depending on whether the

variable is thought to be in first approximation a random walk or a stationary process.

The h-step ahead conditional expectation of the process in Eq. (19) is given by

yj,t+h|t = E[yj,t+h|yj,t] = c

h∑
k=0

δkj + δhj yj,t, (20)

hence, these priors generalise to the case of local projections in a straightforward way,

especially so in the cases in which δj is either one (yj,t+h|t = ch+yj,t) or zero (yj,t+h|t = c).

For LPs, the Minnesota priors can be generalised to assume that, for each horizon-h

regression model, the coefficients B
(h)
1 , . . . , B

(h)
p are a priori independent and normally

distributed. The prior is formulated as follows

β
(h)
0 = vec

(
Bh

RW

)
, (21)

where Bh
RW ≡

[
BRW

1 , . . . , BRW
p , CRW

]
. The matrices BRW

j , j = 2, . . . , p and CRW are

set to zero, whereas BRW
1 = diag(δ1, . . . , δn) where δj, j = 1 : n are either zero or one.13

The priors’ tightness depends on Ω
(h)
0 , which we in turn specify to be a function of a

hyperparameter λ(h) that regulates the overall informativeness of this prior. If λ(h) = 0

the prior information dominates, and system reduces to a vector of univariate models.

Conversely, as λ(h) → ∞ the prior becomes less informative, and the posterior mostly

mirrors sample information. As it is well known, these priors can be implemented with

‘dummy’ or pseudo-observations with properties specified by the prior beliefs on the

13In general, δi could be between zero and one but, from a practical prospective, such a fine tuning
of the priors has little impact on the estimated coefficients for any reasonable value of the tightness
parameter.
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VAR parameters (see Sims, 2005).

It is important to stress that the use of these priors allows for an interpretation in

terms of a frequentist regularised regression. In fact, when all variables are assumed to

be stationary (δj = 0 ∀j) and both the data and priors are assumed to be normally dis-

tributed, the regression model corresponds to a frequentist regularised Ridge regression

(see De Mol et al., 2008).14

3.2 Data-based Priors

An interesting alternative to the statistical priors discussed so far is motivated by the

intuition provided by the map in Eqs. (5-6). Using this notion, we can formulate a prior

for BLP coefficients that is centred around the coefficients of a VAR with equivalent set

of regressors, estimated over a pre-sample, and iterated up to the relevant horizon h, as

follows

β
(h)
0 = vec

(
Bh

VAR

)
, (22)

where Bh
VAR is the h-th power of the autoregressive coefficients of a VAR(p) in yt esti-

mated over T0. Such a prior gives weight to the belief that a VAR provides a plausible

description of the joint behaviour of economic time series, at least in first approximation.

An appealing property of this formulation for the priors is that it allows us to in-

terpret BLP as effectively spanning the space between VARs and local projections. To

see this, note that given Eq. (16) the posterior mean of BLP coefficients under the

VAR-based prior takes the form

B
(h)
BLP ∝

(
Ω

(h)
0

−1
+ x′x

)−1 (
Ω

(h)
0

−1
Bh

VAR + x′xB̂
(h)
LP

)
. (23)

At each horizon h, the relative weight of VAR and LP responses is regulated by Ω
(h)
0 ,

that as we discuss below, can be made a function of a single parameter that regulates

the overall level of informativeness of the prior, λ(h). As in the case of Minnesota priors,

14In a similar manner, one could implement a Lasso penalty on the coefficients of a potentially rich
set of controls, and that would be equivalent to the double exponential (Laplace) prior. Such a prior
would perform variable selection rather than shrinkage as a Ridge regression.
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when λ(h) = 0, BLP IRFs collapse into the prior VAR-based IRFs (estimated over T0).

Conversely, if λ(h)→∞ BLP IRFs coincide with those implied by standard OLS LP.

It is worth observing that, in general, BLP IRFs may not necessarily lie between VAR

and LP IRFs for two reasons. First, the VAR prior for the BLP coefficients is drawn

over a pre-sample whose properties may differ from the estimation sample. Second, note

that Eq. (23) can be rewritten as

B
(h)
BLP ∝

[
Ik +M−1

]−1
B

(h)
LP + [Ik +M ]−1 Bh

VAR, (24)

= QB
(h)
LP + (Ik −Q)Bh

VAR, (25)

where M ≡ x′xΩ
(h)
0 . Each column of B

(h)
BLP refers to a different equation in the system.

Since Q is a full matrix, BLP IRFs for variable j at horizon h are not a simple weighed

sum of the LP and VAR IRFs for variable j at horizon h with scalar weights, and hence

are not restricted to lie in-between them.

3.3 Prior Variance

Under the two specifications of the prior for the mean of the BLP coefficients, the prior

variance is specified in the same way. For the prior scale Ψ
(h)
0 in Eq. (12) we follow Doan

et al. (1983) and fix it using sample information, as it is common in the literature.15

Specifically, we set

Ψ
(h)
0 = diag

([(
σ

(h)
1

)2

, . . . ,
(
σ(h)
n

)2
])

, (26)

where
(
σ

(h)
i

)2

are HAC-corrected variances of univariate local projection residuals for

each variable. Similarly, we set Ω
(h)
0 to be

Ω
(h)
0 =

 Ip ⊗ λ(h)2diag

([(
σ

(h)
1

)2

, . . . ,
(
σ

(h)
n

)2
])−1

0

0 ε−1

 , (27)

15Alternatively these parameters can be considered hyperparameters and estimated with the ap-
proach of Giannone et al. (2015).
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where ε is a very small number, reflecting a very diffuse prior on the intercepts, and

λ(h) controls the overall tightness of the priors at each horizon h.

As in Kadiyala and Karlsson (1997), it is convenient to set the prior degrees of

freedom of the Inverse-Wishart distribution to d
(h)
0 = n + 2, in order to guarantee the

existence of a prior mean for Σ
(h)
ε , equal to Ψ

(h)
0 /(d

(h)
0 − n− 1).

This specification implies the following prior variance for the BLP coefficients, con-

ditional on a draw for Σ
(h)
ε

Var
[
B

(h)
BLP,ij | Σ(h)

ε

]
= λ(h)2

Σ
(h)
ε,ij(

ω
(h)
0,ij

)2 , (28)

where B
(h)
BLP,ij is the response of variable i to shock j at horizon h or, equivalently, the

coefficient of the forecast for variable i at horizon h. The factor Σ
(h)
ε,ij/

(
ω

(h)
0,j

)2

accounts

for the different scales of variables i and j, and we use ω
(h)
0,ij to denote the entries of Ω

(h)
0 .

3.4 Optimal Prior Tightness: the Choice of λ(h)

The hyperparameter λ(h) can either be set to a specific value, or estimated following a

hierarchical Bayes model approach.16 Treating λ(h) as an additional model parameter

provides a way to optimally address the empirical bias-variance trade-off that arises

when choosing between iterative (RW, VAR) and direct (LP) methods. This requires

specifying a second level of prior distributions (or hyperpriors) for λ(h), and estimating

it as the maximiser of its marginal distribution, conditional on the data and model, as

proposed by Giannone et al. (2015) for Bayesian VARs.

Specifically, given an hyperprior distribution, it is possible to estimate λ(h) from its

marginal distribution, conditional on the data and the model

p(λ(h)|y(h)) = p(y(h)|λ(h)) · p(λ(h)) , (29)

where p(y(h)|λ(h)) is the marginal density of the data as a function of the hyperparam-

16This approach is also known as a Maximum Likelihood Type II (ML-II) approach to prior selection,
see Berger (1985), Canova (2007).
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eters

p(y(h)|λ(h)) =

∫
p(y(h)|λ(h), θ)p(θ|λ(h))dθ ∀h , (30)

and p(θ|λ(h)) is the prior distribution of the remaining model’s parameters
(
B

(h)
BLP and Σ

(h)
ε

)
conditional on λ(h).

Extending the argument in Giannone et al. (2015) we provide the intuition for how

this procedure addresses the empirical bias-variance trade-off. As shown in Giannone

et al. (2015) – derivations are exactly the same – it is possible to analytically rewrite

the likelihood in closed form as a function of λ(h),

p(y(h)|λ(h)) ∝
∣∣∣(V posterior

ε(h)

)−1
V prior

ε(h)

∣∣∣ T−(p̃+h)+d
2

︸ ︷︷ ︸
Fit

T−h∏
t=p̃+1

∣∣Vt+h|t∣∣− 1
2

︸ ︷︷ ︸
Penalty

∀h , (31)

where V posterior

ε(h)
and V prior

ε(h)
are the posterior and prior mean of Σ

(h)
ε , and

Vt+h|t = E
Σ

(h)
ε

[
Var(yt+h|yt,Σ(h)

ε )
]

is the variance (conditional on Σ
(h)
ε ) of the h-step-ahead forecast of yt, averaged across

all possible a priori realisations of Σ
(h)
ε . The first term in Eq. (31) relates to the

model’s in-sample fit, and it increases when V posterior

ε(h)
falls relative to V prior

ε(h)
. The

second term is related to the model’s (pseudo) out-of-sample forecasting performance,

and it increases in the risk of overfitting (i.e. with either large uncertainty around

parameters’ estimates, or large a-priori residual variance). Hence, an ML approach to

estimating the hyperparameters would favour values that generate both smaller forecast

errors, and low forecast error variance, therefore balancing the trade-off between model

fit and variance.

As in Giannone et al. (2015), we suggest choosing the hyperprior distribution p(λ(h))

from a family of Gamma distributions. In setting the parameters of the hyperprior dis-

tribution, it is important to observe that at short horizons a VAR (or a RW) is likely

to be a good approximation to the DGP, while over medium horizons the bias in the
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coefficients of the VAR due to model misspecification is compounded and grows due the

iteration. In the long run coefficients have to decline to zero due to stationarity, and

before that the variance of the LP estimator would balance out the bias of the VAR

coefficients. Such a reasoning provides the rationale for choosing the scale and shape

parameters of the Gamma distribution such that the mode of the distribution is fixed,

and the standard deviation increases at each horizon along an ‘S’-shaped curve, i.e. a

sigmoid.In other words, the standard deviation increases over the horizons before satu-

rating to a fixed value. This allows for larger deviations of the estimator from the priors

at longer horizons, while still allowing for regularisations at medium horizons. Specifi-

cally, in the empirical application, we adopt a shifted Logistic function of h specified as

follows:

fλ(h) = κ+
α

1 + e−θ(h−h0)
, (32)

where κ is the shift, α the curve’s maximum value, h0 is is the value of the sigmoid’s

midpoint, and θ is the logistic growth rate or steepness of the curve.

4 BLP Impulse Response Functions

In this section we evaluate empirical IRFs to an innovation in the Federal Funds Rate

estimated using different methods on quarterly US data. In all our empirical applications

throughout the paper, we parametrise the Logistic function for the λ(h) hyperprior (see

Eq. 32)such that it reaches its maximum at horizons larger than h = 36, and fix

κ = 0.1, α = 0.4 and θ = 0.3 (Figure 1 panel (a)). Panel (b) of Figure 1 illustrates

the evolution of the hyperprior for λ(h) as a function of the horizon. The mode of the

hyperprior is fixed at 0.4, while the prior becomes more diffuse the larger the forecast

horizon. Alternatively, the parameters of the Logistic function could also be treated as

additional hyperparameters.

We use the variables in Giannone et al. (2015), namely, real GDP, real consumption,

real investment, total hours worked, real wages, the GDP deflator and the FFR. With

the exception of the policy rate, all variables are expressed in log levels (see Table A.1 in
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Figure 1: Hyperprior for BLP Coefficients
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Note: (a) Shifted Logistic function that regulates the variance of the hyperprior for λ(h). (b) Hyperprior for λ(h) at
different horizons. At h = 1, the hyperprior has mode equal to 0.4 and standard deviation equal to 0.12 (blue line). The
standard deviation increases to 0.16 at h = 6 (orange), to 0.30 at h = 12 (green), to 0.49 at h = 24 (red), and to 0.5 at
h = 36 (purple).

Figure 2: blp responses: VAR vs RW prior
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Note: BLP(5) with random walk (RW) prior (markers), and BLP(5) with VAR(5) prior (solid line). Estimation sample:
1965Q1 to 2017Q1. Pre-sample: 1954Q3 to 1964Q4. Shaded areas denote 90% posterior coverage bands.

the Appendix). The sample for the estimation is fixed across all the methods considered

and runs from 1965Q1 to 2017Q1. The observations from 1954Q3 to 1964Q4 are used

to initialise the BLP priors. We report IRFs to a FFR innovation normalised such that

the impact response of the FFR is equal to 1% throughout. The FFR is ordered last in

all cases to align the treatment with the simulation exercises reported in Section 5.

VAR-based and RW-based BLP Priors. We start our empirical exploration by

evaluating the effects of the choice of the priors for the BLP coefficients in Figure 2 for

a selection of variables (full IRFs are reported in Figure A.1 in the Appendix).
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In the figure, the markers trace out BLP responses obtained with the RW-based

prior, while the solide lines are obtained using a VAR(5)-based prior. In both cases

the BLP is specified with 5 lags. We note that BLP responses are remarkably robust

to the choice of the prior. In what follows, we prefer to use the VAR-based prior for

two main reasons. First, the RW prior may potentially discard important information

in the off-diagonal entries of the matrices of autoregressive coefficients that are relevant

for the dynamic responses of correlated variables to a shock. Second, the VAR-based

prior allows us to interpret BLP-IRFs as essentially spanning the model space between

Bayesian VARs and Local Projections. That said, the results in Figure 2 show that

if the sample length available in the empirical analysis does not permit setting aside

some observations to inform the VAR-based prior, the RW prior remains a valuable

alternative.

LP, BVAR and BLP IRFs. Figure 3 reports the responses to a FFR innovation

estimated using three different methods and for a selection of variables.17 In the top

row, BLP responses are compared with those estimated with a Bayesian VAR with

standard NIW priors. In the bottom row, the same BLP responses are compared with

those from standard linear local projections. In all cases the number of lags is set to 5

and a VAR(5)-based prior is used for the BLP-IRFs.

A few features emerging from this comparison are worth noticing. Overall, the shape

of the IRFs is qualitatively similar across methods. Following a positive innovation in

the Federal Funds rate all real variables contract.18 The length of the sample used, com-

bined with the relatively small number of variables included, limits the erratic nature

of LPs. Because many sample observations are available at each horizon, the estimates

of projection coefficients are relatively well behaved in this instance. However, notwith-

standing the relatively long sample available for the analysis, LP responses quickly

become non-significant after the first few horizons. The width of 90% LP confidence

bands dwarfs those of BLP responses, which are instead comparable to those of the VAR

17Full IRFs are in Figure A.2 in the Appendix.
18In all cases a pronounced price puzzle emerges, likely pointing to an inability of the standard

Cholesky identification to recover monetary policy shocks. See Figure A.2.
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Figure 3: Empirical IRFs: BVAR, LP and BLP
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coverage bands.

(BLP responses are the same in the top and bottom row of the figure).

VAR responses are, by construction, the smoothest. Based on the same one-step-

ahead model iterated forward, VAR responses naturally also have tighter bands than

LP do (Eq. 6). This feature, however, also results in VARs implying stronger and more

persistent effects than BLPs (and LPs) do. Conditional on a very similar path for the

policy rate response, BLP-IRFs tend to revert to equilibrium faster than VAR-IRFs do,

and tend to imply richer adjustment dynamics. This may indicate that some of the

characteristics of the responses of the VAR may depend on the dynamic restrictions

imposed by the iterative nature of the VAR, rather than being genuine features of the

data. The blue markers in Figure 4 display the estimated optimal prior shrinkage hyper-

parameters λ(h) that maximise the posterior likelihood in the BLP responses in Figure

3. Interestingly, the prior is optimally loosened as the horizon increases, suggesting that

VAR (or equivalently RW) responses tend to be progressively rejected by the data.
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Figure 4: empirical optimal prior tightness
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Note: The grey marker is the optimal shrinkage of the Litterman (1986) prior for the BVAR coefficients at h = 1,
estimated as in Giannone et al. (2015). Blue markers denote the optimal tightness of the VAR prior for BLP coefficients
for h > 1.

Finally, in Figure 5 we evaluate the robustness of BLP estimates over different sub-

samples.19 The figure compares BLP-IRFs with BVAR-IRFs (top row) and LP-IRFs

(bottom row) computed over a set of fixed-length rolling 30-year samples from 1965Q1

to 2017Q1. Starting from 1965Q1, we use the preceding 10 years to inform the VAR-

prior for the BLP coefficients, and the 30 years following to estimate IRFs with the three

methods. Then we move forward by one quarter and repeat the procedure. This yields

a total of 23 different subsamples. In each case the number of lags is set to 5. In the

figure we use shaded areas to highlight the space spanned by all the BLP responses. For

each variable these are the same in the top and bottom rows of the figure. In the top

row the dash-dotted lines are used for the BVAR-based IRFs across all the subsamples.

In the bottom row the dotted lines trace the corresponding LP-IRFs. Here we abstract

from estimation uncertainty.

The broad picture that emerges from Figure 5 is that BLP-IRFs are remarkably

stable across samples, relative to both the VAR and the LP. Hence, the regularisation

implicit in the BLP method not only allows to reduce the estimation uncertainty that

19Full IRFs are reported in Figure A.3 in the Appendix.
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Figure 5: Stability over Subsamples: VAR, LP and BLP
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is typical of direct methods, but also suggests a lower degree of time-variation in the

dynamic interaction among macroeconomic variables that those implied by the alterna-

tive methods. Clearly, these results are silent on the ability of BLP to trace out and

approximate the true dynamics. We turn to this important point in the next subsection.

5 BLP in a Simulated Environment

We set up a controlled Monte Carlo experiment to evaluate the robustness of BLP

to model misspecification, and compare it to that of LPs and VARs. Specifically, we

simulate artificial data sets from a medium-scale DSGE model that admits a VAR(p)

representation in n endogenous variables. We then recover the IRFs using the three

methods estimated with p̃ < p lags and ñ < n variables. Since medium-scale DSGE

models are known to produce reasonably good fit of the data (see e.g. Smets and Wouters,

2007), data simulated from them provide a sensible benchmark to assess the performance

of the different empirical methods.
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We use the model in Giannone et al. (2015), in itself a variation of the one in Jus-

tiniano et al. (2010). Relative to the original framework in Justiniano et al. (2010),

the model we use here assumes that the behaviour of the private sector is predeter-

mined relative to the monetary policy rule, which allows for a recursive identification

of monetary policy shocks, same as in Giannone et al. (2015). The model counts seven

endogenous variables: output (Y), consumption (C), investment (I), hours worked (H),

wages (W), prices (P), and the short-term interest rate (R). The model’s dynamics are

well approximated by a VAR with five lags.

From the model, we simulate 500 artificial time series with 200 data points each

for all the endogenous variables. The first 75 data points are used to initialise the

BLP prior. For each data set, we estimate the impulse responses to a monetary policy

shock obtained with BLP, a VAR with standard Normal-Inverse Wishart priors, and

the standard Local Projections. The DSGE is estimated using quarterly U.S. data on

output, consumption, and investment growth, hours worked, wage and price inflation,

and the federal funds rate from 1965Q1 to 2017Q1. Details on data and transformations

are reported in the Appendix.

In our first exercise the misspecification amounts to (i) including only 1 lag instead

of 5, and (ii) omitting the price variable. This corresponds to a misspecification that is

likely to materialise in practice when the lag order and the information sets are unknown.

This is a situation in which LP are typically thought to be more flexible than standard

VARs. We use this scenarios to assess how BLP compares with the two methods.

Results are in Figure 6a. In each subplot, the red dash-dotted lines are the model-

based IRFs evaluated at the posterior mode of the distribution of the parameters, as in

Giannone et al. (2015). These are compared with the average of the median responses

across simulations for LPs (top row), BVAR (middle row), and BLP (bottom row). The

shaded areas in each subplot are the 95% quantiles of the distribution of the IRFs across

replications. Figure 6b reports the average optimal prior tightness for the BLP-IRFs

across horizons, together with its distribution across the 500 replications. In Figures 7a

and 7b the degree of misspecification is exacerbated, and only 3 variables are included,

again with 1 lag.
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Figure 6: Simulations
True model: n = 7, p = 5. Estimated models: n = 6, p = 1
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(a) Notes: IRFs. In all panels the red dash-dotted lines depict the ‘true’ DSGE responses. Top row: average of median LP
responses across simulations. Middle row: average of median BVAR responses across simulations. Bottom row: average
of median BLP responses across simulations. Grey areas are 95% quantiles of the distribution of IRFs across simulations
for each method.
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(b) Notes: Optimal Prior Tightness. The grey marker is the optimal shrinkage of the Litterman (1986) prior for the
BVAR coefficients at h = 1, estimated as in Giannone et al. (2015). Average across replications. The blue markers denote
the optimal tightness of the VAR prior for BLP coefficients for h > 1. Average across replications. The grey error bars
are constructed across simulations.
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Figure 7: Simulations
True model: n = 7, p = 5. Estimated models: n = 3, p = 1
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(a) Notes: IRFs. In all panels the red dash-dotted lines depict the ‘true’ DSGE responses. Top row: average of median LP
responses across simulations. Middle row: average of median BVAR responses across simulations. Bottom row: average
of median BLP responses across simulations. Grey areas are 95% quantiles of the distribution of IRFs across simulations
for each method.
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(b) Notes: Optimal Prior Tightness. The grey marker is the optimal shrinkage of the Litterman (1986) prior for the
BVAR coefficients at h = 1, estimated as in Giannone et al. (2015). Average across replications. The blue markers denote
the optimal tightness of the VAR prior for BLP coefficients for h > 1. Average across replications. The grey error bars
are constructed across simulations.
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The broad picture that emerges from the comparison is that BLPs can be as accurate

as LPs, and hence a valid alternative to VARs for what concerns robustness to model

misspecification. In Figure 6a the degree of misspecification is relatively mild. Yet,

VAR impulse response functions deviate systematically from the true ones virtually in

all cases. The difference between BLP/LP and VAR responses becomes even starker

in Figure 7a. The evolution of the optimal BLP priors’ tightness in Figures 6b and 7b

confirms the pattern. As the horizon grows, the data tend to deviate more from the

VAR-based BLP prior.

6 Forecasting with BLP

In the forecasting literature, the difference between VARs and LPs has an obvious

interpretation as the difference between iterative and direct forecasts. Marcellino et al.

(2006) were the first to address the issue of which of the two approaches to forecasting

performed better from a purely empirical perspective. The results of that exercise did

not return a clear winner. Iterative forecasts were found to be mostly preferable to direct

ones, but ultimately the choice between the two methods had to depend on the dynamic

properties of the series, on the sample length available, on the empirical specification

and the numbers of lags allowed. Ultimately, the problem is always framed in terms of

balancing the bias-variance tradeoff. BLPs are designed with this objective; therefore,

the same framework can equally be used for forecasting purposes.

In this section, we compare BLP forecasts with multivariate forecasts from both

direct methods (LPs) and iterated BVARs, and a naive univariate random walk forecast

which serves as a benchmark. The design of the recursive forecasting exercise is as

follows. The first estimation sample is 1965Q1 to 1990Q1, where the preceding 10 years

are used to inform the prior for the BLP coefficients. Out-of-sample forecasts from all

the methods are produced for three forecast horizons equal to 1 quarter, 1 year and

2 years ahead. Observations for 1990Q2 are then added to the estimation sample and

the procedure is repeated. The last forecast origin is 2015Q2. This yields a sequence

of 102 out-of-sample forecasts over which the performance of each method is evaluated.
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The variables used are the seven variables introduced in the previous section, with

transformations as in Section ?? (see Table A.1 in the Appendix).

Let yt denote the n-dimensional vector of endogenous variables at t, and yt+h|t its

h-step ahead forecast. For each of the methods considered the forecasts are computed

as follows:

yLP
T+h|T = B̂

(h)
LPyT (33)

yVAR
T+h|T = B̂h

VARyT (34)

yBLP
T+h|T = B̂

(h)
BLPyT , (35)

where yT ≡ (1, y′T , y
′
T−1, . . . , y

′
T−p+1)′, T = 1990Q1, . . . , 2015Q2, p = 5, h = 1, 4, 8, and

each of the estimated B̂ matrices of coefficients is of dimension n× (np+ 1). As noted,

the estimation sample always starts in 1965Q1. The random walk forecast is computed

as a naive constant-growth forecast.

We evaluate point and density forecasts using standard metrics. For point forecasts,

we rely on root mean squared forecast errors, computed as:

RMSFEj =

√√√√ 1

N

15Q2∑
T=90Q1

(
yT − yjT+h|T

)2

, (36)

where j = {RW,LP,VAR,BLP}, and N = 102 is the length of the forecast sequence.

For the density forecasts we make use of Log-Scores, computed as:

LSj =
1

N

15Q2∑
T=90Q1

log p
(
yjT+h|T

)
, (37)

where p
(
yjT+h|T

)
denotes the predictive density, j = {LP,VAR,BLP}, and N = 102 is

the length of the forecast sequence.

The point forecasts for all the variables and all horizons considered are reported

in Figure A.4 in the Appendix, while Figure A.5 reports predictive distributions at

the three forecast horizons considered for BLP and VAR. The results of the forecast
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Table 1: Average RMSFE – Point Forecast

h = 1 h = 4 h = 8

RW LP VAR BLP RW LP VAR BLP RW LP VAR BLP

RGDP 0.671 0.682 0.641 0.641 0.523 0.651 0.530 0.593 0.448 0.503 0.445 0.530

RCON 0.497 0.509 0.469 0.469 0.448 0.456 0.370 0.419 0.341 0.379 0.317 0.379

RINV 2.155 2.298 2.264 2.264 2.136 2.350 2.091 2.414 1.976 1.811 1.743 2.100

HOUR 0.528 0.586 0.517 0.517 0.655 0.727 0.575 0.657 0.747 0.538 0.517 0.587

WAGE 1.577 1.048 1.008 1.008 0.590 0.526 0.466 0.479 0.431 0.353 0.362 0.338

DEFL 0.210 0.238 0.216 0.216 0.160 0.230 0.215 0.251 0.185 0.347 0.274 0.364

FFR 0.088 0.183 0.156 0.156 0.106 0.159 0.111 0.121 0.113 0.141 0.084 0.078

Note: RMSFE. Recursive forecasts for all methods start in 1965Q1, the forecast origins go from 1990Q1 to 2015Q2. LP,
VAR and BLP are all estimated with 5 lags.

evaluation are reported in Table 1 (RMSFE) and Table 2 (LS).

Table 2: Log Predictive Scores – Density Forecast

Relative to LP Relative to VAR

h = 1 h = 4 h = 8 h = 1 h = 4 h = 8

RGDP 0.086 -0.445 -1.091 – -0.124 -0.328

(0.357) (1.498) (1.68) – (0.94) (1.407)

RCON 0.126 -0.762 -1.162 – 0.070 -0.352

(0.305) (1.685) (1.834) – (0.741) (1.359)

RINV 1.089 0.621 -0.118 – -0.233 -0.329

(0.676) (1.443) (1.744) – (0.828) (1.479)

HOUR 0.304 -0.425 -1.473 – -0.245 -0.140

(0.451) (1.31) (1.357) – (0.688) (1.56)

WAGE -0.019 -1.052 -1.442 – -0.120 -0.384

(0.65) (1.772) (1.796) – (0.775) (0.891)

DEFL 4.031 -0.434 -1.230 – -0.125 -0.271

(9.996) (2.602) (1.074) – (0.683) (1.096)

FFR 2.413 1.077 5.772 – -0.069 0.177

(7.332) (4.03) (7.902) – (0.491) (0.677)

Note: Log predictive scores. Recursive forecasts for all methods start in 1965Q1, the forecast origins go from 1990Q1 to
2015Q2. LP, VAR and BLP are all estimated with 5 lags.

The forecasting exercise suggests that, as expected, BLP yields forecasts which have

accuracy comparable to that of both VARs and LPs (Table 1). As noted, however, the

large variance associated to standard LP-based forecasts makes the predictive densities

in this case very wide, which is visible in the large standard deviations in Table 2.

It is worth noting that the design of our forecasting exercise tends to downplay the

differences among methods due to the sample being used for the estimation of the
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coefficient increasing in size over time. Rolling forecasts computed over fixed-length

estimation windows are likely to make the differences starker, as noted in the context

of Figure 5. As a consequence, the numbers reported in this section can be thought of

as conservative estimates. Nonetheless, they confirm that BLP are a valuable method

also for forecasting purposes.

7 Conclusions

In this paper we have proposed Bayesian Local Projections (or BLP) as a way to address

the empirical bias-variance trade-off that is inherent in the choice between iterative

(VAR) and direct (LP) methods for both structural analysis and forecasting. BLPs

resolve the empirical dichotomy between VARs and LPs by framing the choice in terms

of the standard bias-variance trade-off that is at the heart of Bayesian estimation.

In setting up BLP we formulate informative priors that give weight to the idea that

VARs typically provide a good approximation of the joint dynamics of economic time

series. But at each horizon we allow the data to optimally deviate from the prior by

making the overall prior tightness a function of the forecast horizon/projection lag, and

estimating it in the spirit of hierarchical modelling.

We show that BLP-IRF are more robust to model misspecification than VAR-based

IRFs, but have smaller estimation uncertainty relative to LP-IRFs. This makes them

potentially preferable to both methods. In a multivariate out-of-sample forecasting ex-

ercise, we show that Bayesian direct methods are also a valuable alternative to Bayesian

VARs.
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A Appendix

A.1 Data Construction and Transformations

Variables Construction (link to download page behind FRED-code)

• Real GDP: RGDP≡ log
(
GDPC1
POP

)
GDPC1 Real Gross Domestic Product, Billions of Chained 2009 Dollars, Quarterly, Sea-

sonally Adjusted Annual Rate

POP Total Population: All Ages including Armed Forces Overseas, Thousands, Quar-

terly, Not Seasonally Adjusted

• Real Consumption: RCON≡ log
(
PCND+PCESV
GDPDEF×POP

)
PCND Personal Consumption Expenditures: Nondurable Goods, Billions of Dollars,

Quarterly, Seasonally Adjusted Annual Rate

PCESV Personal Consumption Expenditures: Services, Billions of Dollars, Quarterly,

Seasonally Adjusted Annual Rate

GDPDEF Gross Domestic Product: Implicit Price Deflator, Index 2009=100, Quarterly,

Seasonally Adjusted

• Real Investment: RINV≡ log
(

PCDG+GPDI
GDPDEF×POP

)
PCDG Personal Consumption Expenditures: Durable Goods, Billions of Dollars, Quar-

terly, Seasonally Adjusted Annual Rate

GPDI Gross Private Domestic Investment, Billions of Dollars, Quarterly, Seasonally

Adjusted Annual Rate

• Total Hours Worked: HOUR≡ log
(
HOANBS
POP

)
HOANBS Nonfarm Business Sector: Hours of All Persons, Index 2009=100, Quarterly,

Seasonally Adjusted

• Real Compensation per Hour: WAGE≡ log (COMPRNFB)

COMPRNFB Nonfarm Business Sector: Real Compensation Per Hour, Index 2009=100,

Quarterly, Seasonally Adjusted

• Federal Funds Rate: FFR≡ FEDFUNDS
4

FEDFUNDS Effective Federal Funds Rate, Percent, Quarterly, Not Seasonally Adjusted
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Table A.1: Data and Transformations

Transformations

Per Capita DSGE IRFs FORECASTS

RGDP Real Gross Domestic Product • log-diff log log

RCON Real Consumption • log-diff log log

RINV Real Investment • log-diff log log

HOUR Hours Worked in Non-Farm Sector • log log log

WAGE Real Compensation per Hour log-diff log log

DEFL GDP Deflator log-diff log log

FFR Federal Funds Rate level/4 level/4 level/4

Note: Original data series are retrieved from FRED.

Figure A.1: blp responses: VAR vs RW prior
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Note: BLP(5) with random walk (RW) prior (markers), and BLP(5) with VAR(5) prior (solid line). Estimation sample:
1965Q1 to 2017Q1. Pre-sample: 1954Q3 to 1964Q4. Shaded areas denote 90% posterior coverage bands.
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Figure A.2: Empirical IRFs: BVAR, LP and BLP
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Figure A.3: Stability over Subsamples: VAR, LP and BLP
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ABOUT OFCE 
The Paris-based Observatoire français des conjonctures économiques (OFCE), or French Economic 
Observatory is an independent and publicly-funded centre whose activities focus on economic research, 
forecasting and the evaluation of public policy. 
 
Its 1981 founding charter established it as part of the French Fondation nationale des sciences politiques 
(Sciences Po), and gave it the mission is to “ensure that the fruits of scientific rigour and academic 
independence serve the public debate about the economy”. The OFCE fulfils this mission by conducting 
theoretical and empirical studies, taking part in international scientific networks, and assuring a regular 
presence in the media through close cooperation with the French and European public authorities. The work 
of the OFCE covers most fields of economic analysis, from macroeconomics, growth, social welfare 
programmes, taxation and employment policy to sustainable development, competition, innovation and 
regulatory affairs. 
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Sciences Po is an institution of higher education and research in the humanities and social sciences.  Its work 
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crosscutting programmes. 
Its research community includes over two hundred twenty members and three hundred fifty PhD 
candidates.  Recognized internationally, their work covers a wide range of topics including education, 
democracies, urban development, globalization and public health.   
One of Sciences Po’s key objectives is to make a significant contribution to methodological, epistemological 
and theoretical advances in the humanities and social sciences.  Sciences Po’s mission is also to share the 
results of its research with the international research community, students, and more broadly, society as a 
whole.  
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