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Abstract

This paper analyses how policy choice affects the direction of innovation
towards renewable and away from fossil-fuel energy technologies in a sample
of 33 countries between 1990 and 2012. By policy choice, we mean the
combination of market-based and command-and-control policy instruments.
We develop three competing models of energy innovation – the linear, the
interaction and the threshold models – and show that the threshold model
is the best fit for the data. We then simulate the direction of innovation
over the sample period under various policy scenarios. We show that under
the appropriate policy mix, countries can swiftly break out from fossil fuel
towards renewable energy innovation.
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1 Introduction

This paper analyses the effectiveness of environmental policies portfolios in direct-

ing innovation towards renewable energy sources and away from fossil fuels. By

policy portfolios, we mean the choice between, and the combination of, market-

based policies and command-and-control policies, which has attracted much atten-

tion in the environmental economics literature (Weitzman 1974, Hahn & Stavins

1992, Requate 2005, Nordhaus 2019). Our intuition is that policy effectiveness –

and the direction of innovation induced by such policies – depends on the accumu-

lation of technological competencies in the new technology vis-à-vis the incumbent

one. Building on the literature about directed technical change (Acemoglu et al.

2012, Noailly & Smeets 2015, Aghion et al. 2016), we argue that the choice of

optimal policies is specific to the degree of specialization in renewable technologies

relative to fossil fuel ones.

We develop three competing models of the direction of energy innovation. Each

model implies a specific channel through which heterogeneous policies translate

into energy innovation. The linear model assumes that policy effectiveness applies

uniformly, irrespective of the countries’ capabilities in the two competing tech-

nologies. The interaction model allows for policy effectiveness to change gradually

with such capabilities. The threshold model gives room for discontinuities in pol-

icy effectiveness depending on the level of capabilities. Using country-level data,

we estimate these three models and choose the one that best fits the country level

data. Based on our preferred model, we quantify policy effectiveness by comparing

the observed policy scenario with two counterfactual scenarios in which countries

choose the appropriate policy instruments at various levels of stringency.
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Our results can be summarized as follows. First, the threshold model, which

shows strong discontinuities in policy effectiveness to direct innovation, is the one

that best fits historical data. Second, policy effectiveness depends on the coun-

tries’ (relative) capabilities in the two competing technologies, i.e., renewables and

fossil-fuel technologies. Third, the choice of the optimal policy instrument mix

also depends on the level of technological specialization. Breaking out from the

dominant technology when the relative specialization in the novel technology is

very low requires the use of command-and-control policies. Market-based poli-

cies are effective in redirecting innovation only if a country has a sufficiently high

level of specialization in such technologies. Fourth, our simulations show that, if

the choice of policies is timed correctly, countries can break out from a dominant

technology in a relatively swift period of time.

The remainder of the paper is organized as follows. Section 2 positions our

contribution in the existing literature. Section 3 presents the conceptual frame-

work which motivates our empirical analysis, and Section 4 addresses the various

challenges of our econometric implementation. Section 5 discusses empirical re-

sults and simulates how optimal policy choice, timing, and stringency affect policy

effectiveness. Section 6 concludes.

2 Literature review

The main intuition of this contribution is that the appropriate policy choice to

promote the technological transition towards renewable energy (a new technology)

and away from fossil fuels (an incumbent technology) is contingent on the stage

of technological development of a country. This idea is certainly not new. In par-
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ticular, the emergence of multiple equilibria and poverty traps has been related to

factors – and thus, implicitly, to policies and institutions (Rodrik 2005) – affecting

mass consumption (Murphy et al. 1989), the interaction between financial frictions

and human capital accumulation (Galor & Zeira 1993) or technical skills required

to pursue an R&D-based growth strategy (Howitt & Mayer-Foulkes 2005). An

important contribution is Acemoglu et al. (2006): at early stages of development,

growth is favored by an investment-based strategy; conversely, at later stages of

development a jump to an innovation-based strategy is required.

To the best of our knowledge, no research has to date tested the hypothesis

that policy effectiveness in directing innovation away from fossil fuels and towards

renewable technologies is conditional upon past knowledge accumulation. On the

one hand, the environmental innovation literature shows that past knowledge is

a crucial element to understand the dynamics of further technological develop-

ment (Popp 2002, Verdolini & Galeotti 2011, Noailly & Smeets 2015). On the

other hand, environmental policies also play a key role in promoting the break out

from an established technological trajectory. In their key contribution, Aghion

et al. (2016) build on the directed technical change literature to show that, in

the context of path-dependent innovation, firms redirect technical change away

from polluting technologies and toward cleaner technologies in response to (poli-

cies which) increase the price of fossil energy. Yet, their analysis relies on the key

assumption that policy effectiveness on innovation outcomes is not influenced by

path dependency.

The first contribution of this paper is to empirically test the assumption of inde-

pendence between technological specialization resulting from accumulated knowl-

edge and environmental policy effectiveness. While there is no strong prior to
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assume this assumption holds, past contributions evaluating the causal effect of

environmental policies on innovation do not question whether the appropriate pol-

icy vector is conditional on past accumulation of knowledge (see, e.g. Popp 2002,

Nesta et al. 2014, Calel & Dechezleprêtre 2016, Dugoua 2023). Conversely, our em-

pirical approach allows the effect of a given environmental policy on the direction

of innovation to be mediated by a given country’s existing competencies.

Consequently, our second contribution is methodological. We develop an em-

pirical protocol to compare three competing models of possible interaction be-

tween accumulated technological capabilities and policy effectiveness: (i) the lin-

ear model, which is most common in prior research, where policy effectiveness is

not influenced by technological capabilities; (ii) the interaction model, where the

influence of accumulated capability on policy effectiveness is smooth and contin-

uous; (iii) the threshold model, which allows for sharp discontinuities in policy

effectiveness.

Our third contribution is the focus on the simultaneous assessment of the ef-

fectiveness of command and control (CC) and market-based (MB) policies in

directing innovation towards renewable and away from fossil fuel technologies.

Command-and-control instruments regulate either the type of technology adopted

or the level of emissions (typically, emission limits or technology standards). Market-

based policies price emissions directly or indirectly (typically, feed-in tariffs or

emission taxes) (Requate 2005). Only few contributions evaluate both instru-

ments simultaneously (e.g., Lamperti et al. 2020, Aghion et al. 2016), and none

allow for policy effectiveness to depend on existing capabilities.

We purposely focus on the “dynamic incentives” provided by command-and-

control and market-based environmental policy instruments – that is, their ability
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to spur innovation and direct it away from fossil-based technologies towards re-

newable energy options. In doing so, we depart from the prevalent attempts to

assess the complementarity or substitution between innovation policies (i.e., R&D

investments) and price-based policies such as carbon taxes or permits. Indeed, the

role of direct R&D investments inspiring innovation is well-established. Several

contributions also compare the effectiveness of green technology policy and carbon

taxes (e.g., Greaker et al. 2018, Noailly & Smeets 2015, Aghion & Jaravel 2015).1

Conversely, the few available modeling and empirical analyses on the differential

dynamic incentives provided by market-based vs. command-and-control instru-

ment to direct innovation provide conflicting evidence (Requate 2005, Hepburn

2006, Lamperti et al. 2020, Gugler et al. 2024).

We therefore complement the existing literature by proposing a new method-

ology that allows identifying appropriate environmental policies that effectively

redirect innovation in the desired trajectory, depending on relative technological

capabilities. Furthermore, our effort to quantify policy effectiveness by means

of counterfactual scenarios informs the debate on the appropriate environmental

policy choice, its timing and its desired level of stringency.

1Greaker et al. (2018) suggest that direct R&D programs are more effective than market-
based approaches. More recently, Gugler et al. (2024) show that R&D investments spur green
innovation, beyond and above the positive effect of market based policies.
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3 Competing models of the direction of technical

change2

The starting point of our analysis is the aggregate Cobb-Douglas knowledge pro-

duction: new knowledge k stems from an existing stock of knowledge K, aug-

mented with a policy vector P, whose composition and effects represent the core

of our investigation. We consider two technologies, i.e. a new technology that

competes with an incumbent one. In the context of energy innovation, renewable

technologies g challenge the incumbent, fossil-efficient technology f . This gives

rise to one knowledge production function per technological domain.

The presence of two competing technological paradigms naturally raises the

issues of policy effectiveness in directing technical change. To account for this, we

follow Acemoglu et al. (2012) and focus on the ratio of the two knowledge produc-

tion function equations: the numerator pertains to field g, and the denominator

pertains to field f . Abstracting from country i and time t, this yields the following

ratio equation:

rk = rA · rKβKg ·K
−βKf

f ·K
βK−(g+f)

−(g+f) ·CBC · eBP×P+ϵ, (1)

where prefix r implies relative values for innovation flows k, constant A and knowl-

edge capital K, such that rk = kg/kf , rA = Ag/Af , and rK = Kg/Kf . The inclu-

sion of knowledge stocks K controls for past R&D investments and incentives in

either fields g and f , which have successfully translated into and innovation out-

2This Section is based on Appendix A, which provides a more thorough presentation of our
modelling strategy.
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come, i.e., patents. Equation 1 also introduces overall knowledge stocks K−(g+f),

allowing for the presence of spillovers stemming from domains other than fields

g and f . Vector C represents a vector of controls and ϵ embodies various shocks

discussed in Section 4.

The dependent variable rk = kg/kf can be interpreted as the direction of energy

innovation in a given country. If rk is larger than unity, innovation in the novel

(carbon-free) technological domain – which represents a path-breaking solution

to global warming – progresses faster than innovation in the incumbent (carbon-

efficient) technological domain – which represents a transitory and incomplete

solution to global warming. In a similar fashion, variable rK = Kg/Kf represents

the level of accumulated competences accumulated in renewable energy sources

relative to those in incumbent fossil fuel energy sources. Higher values of rK

imply more specialization towards sustainable growth as opposed to the current

paradigm of economic growth.

Taking logs of Equation (1) yields what we refer to as the linear model of

directed technical change:

ln rk = ln rA+βKg ln rK−βKf lnKf+βK−(g+f)
lnK−(g+f)+BC lnC+BPP+ϵ. (2)

The coefficient vector BP captures the marginal effect of a unit increase in the

stringency of specific environmental policies on the direction of energy innovation.

Importantly, this model assumes that policy effectiveness in directing innovation

is independent from relative specialization of a country in renewable vs. fossil

technologies rK. Model (2) represents the benchmark of our empirical analysis,
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that is, the null model against which alternative models are being compared.

A straightforward extension of Model (2) is to assume that policy effectiveness

is mediated by the relative specialization in the two technological domains. This

is obtained by interacting the vector of policy variables P with the ratio rKA:

ln rk = ln rA+ βKg ln rK +BPP+BKg,P(ln rK ×P) (3)

− βKf lnKf + βK−(g+f)
lnK−(g+f) +BC lnC+ ϵ.

Model (3) is an unconstrained version of Model (2) where policy effectiveness is

not assumed to be constant. Rather, the marginal effect of policy depends linearly

on the relative stock of knowledge stock rK.3 We call this model the interaction

model.

A less straightforward extension of Model (2) can be used to search for discon-

tinuities in the mediating effect of specialization on policy effectiveness; that is, to

identify whether thresholds exist, in terms of values of rK, below or above which

a given policy becomes both effective and stable. Conditional on the existence of

a threshold, this model reads:

ln rk = ln rA+ βKg ln rK +B1PP× 11(γ) +B2PP× 12(γ)

− βKf lnKf + βK−(g+f)
lnK−(g+f) +BC lnC+ ϵ,

(4)

where 1 are indicator variables for different regimes of policy effectiveness. Variable

3Observe that policy effectiveness now becomes a linear function of relative specialization
rK: ∂ ln rk/∂P = BP +BKg,P × ln rK.
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11 is set to unity when the threshold variable ln rK is below γ (i.e. ln rK ≤ γ)

), 0 otherwise, and 12 is set to unity when ln rK exceeds the given threshold

value γ (i.e. ln rK > γ), 0 otherwise. Model (4) allows for abrupt variations

in the effect of policy on the direction of innovation, depending on the relative

degree of specialization. For instance, below the threshold γ, the marginal effect

of environmental policies is B1P. We refer to this effect as the policy inducement

effect in the “first policy regime”, i.e. the regime which includes country-year

observations characterized by a relative level of competencies in renewables relative

to fossil-based technologies below the identified threshold. In turn, B2P captures

the policy effectiveness in the group of country-year observations with a level of

relative competencies above the identified threshold. If Model (4) is preferred

over Model (2), we can then search for a second threshold using the two-threshold

model, which reads:

ln rk = B1PP× 11(γ1, γ2) +B2PP× 12(γ1, γ2) +B3PP× 13(γ1, γ2)

ln rA+ βKg ln rK − βKf ′ lnKf + βK−(g+f)
lnK−(g+f) +BC lnC+ ϵ,

(5)

where 11 is set to unity when ln rK ≤ γ1, 0 otherwise, 12 is set to unity when

γ1 < ln rK ≤ γ2, 0 otherwise, and 13 is set to unity when ln rK > γ2, 0 otherwise.4

It is straightforward to extend Equation (5) to a higher number of thresholds.

Models (2) to (4)-(5) represent three competing models of the direction of

technical chance. The comparison of their explanatory power will allow us to

identify the one that best fits the observed data.

4For the sake of simplicity, we assume here that γ1 < γ2.
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4 Empirical protocol

4.1 Data sources

This paper combines patent data, policy data, and economic data. First, we

use patent data to construct both the dependent variable – which measures the

direction of innovative activity – and the threshold variable – which measures the

relative specialization between the two competing technologies. The dependent

variable is defined as the ratio of renewable to fossil fuel patents by inventors in

country i in year t. The threshold variable, measuring each country’s level of

specialization in renewables relative to fossil-fuels is defined as the ratio of the

patent stock in renewable over the patent stock in fossil-fuel energy, by country-

year. The inclusion of knowledge stocks controls for past R&D investments in

either fields g and f , which have successfully translated into patents.5

Proxies for command-and-control and market-based policy instruments are

build using data from the OECD EPS - Environmental Policy Stringency database

(Botta & Kozluk 2014). OECD EPS is the largest country-specific and internationally-

comparable database, including information on 14 environmental policy instru-

ments primarily related to climate and air pollution and covering the years 1990-

2012 for the countries in our sample. The databases covers both market-based and

non-market based instruments. Within the former, it reports information about

5Patent stocks are only an imperfect control for past R&D investments, whether funded
and/or performed by public or private research organizations. However, past literature (e.g.
Griliches 1995, Jaffe 1986, Audretsch & Feldman 1996) has shown that patents are a likely
outcome of overall R&D investments, such that one must expect a positive correlation between
past R&D investments and patent stocks. Moreover, patent stocks are a direct control for serial
correlation in the dependent variable, avoiding spurious correlation to occur among the set of
policy variables with the dependent variable. Appendix B describes of our metrics on renewable
and fossil-fuel patents.
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Taxes (CO2, Diesel, NOx and SO2), Traditing Schemes (Green Certificates, CO2

and White Certificates), Feed-in Tariffs (Wind and Solar). Within the latter, it

reports information on Standards (emission limites for NOx, SO2, PMs and diesel

sulphur content), and R&D subsidies (Renewable energy public RD&D budget).

Stringency is defined as the degree to which environmental policies put an explicit

or implicit price on polluting or environmentally harmful behavior. For each policy

instruments, countries are scored on a scale from 0 (not stringent) to 6 (highest

degree of stringency). For the purpose of our analysis, we create and indicator

for CC and one for MB policies, measuring the stringency of market-based and

command-and-control policies, respectively. MB is calcuated as the average of

(a) taxes on CO2, NOx and SOx; (b) trading schemes (Green Certificates, White

Certificates and CO2); and (c) feed-in tariffs (for wind and solar power genera-

tion). CC is calculated as the average of the scores for emission limits of NOx,

SOx and PM .For both type of instruments, we then generate normalized indexes

which vary from 0 to 1, with 1 indicating the highest level of stringency in that

given instrument observed over the sample period.6

Figures 1 and Figure 2 display the dynamics of the key variables at stake. The

first and second rows of Figure 1 show the evolution of the production of renew-

able energy and fossil-based patents for selected OECD and developing countries7,

while the third row shows the ratio of the green to brown patents rk. Over the

sample period, we observe a global upward trend in patenting in both renew-

able and fossil fuel technologies, but the latter grew at a significantly slower pace

6We do this in order to facilitate the comparison of the parameter estimates for the two
policy instruments. Importantly, this transformation does not affect the covariance of either the
dependent variable or the set of control variables with the two policy variables.

7These countries are Russia, India, Indonesia, China and South Africa.
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than the former. All countries in the sample show a re-direction of innovation

towards renewable technologies. This phenomenon is more pronounced in non-

OECD countries, although in OECD countries, the level of patenting activity is

higher. Figure 2 shows the evolution of the threshold variable over time (rK, in

the first row), the dynamics of CC (second row) and MB policies (third row). We

observe that command-and-control policies are vastly adopted in developed coun-

tries, while their score is lower and displays less variation in developing countries.

Market-based policies have a much lower score overall, but their use/stringency

increases steadily throughout the sample period, reflecting a gradual replacement

of CC policies with MB policies in several countries.

[Figure 1 about here.]

[Figure 2 about here.]

Lastly, we include the following control variables: (i) electricity production

(lnEP in kW per hour, in logs); (ii) electricity consumption (lnEC in kW per

capita, in logs); (iii) electricity import share in domestic production (EM); (iv)

electricity export share in domestic production (EX); (v) GDP (lnGDP measured

in thousands of 2011 USD PPP, in logs); (vi): population (lnPOP , in logs);

(vii) human capital index (HC). Control variables (i)-(iv) are obtained from

the World Development Indicators Database (WDI 2020) and capture important

features related to the energy system of a given economy. Economic variables

(v) and (vi) are typical controls for the size of a given economy and its living

standards and taken from the Penn World Tables, version 10.01 (Feenstra et al.

2015). Their joint introduction grasp the overall distance of a country to the

economic frontier. The human capital index combines information on the average
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years of schooling from Barro & Lee (2013) with rates of return of education

as estimated by Psacharopoulos (1994). The motivation for introducing human

capital (vii) is to measure preferences for renewable energy, which, we hypothesize,

increases with human capital (Kim et al. 2018).

[Table 1 about here.]

Table 1 reports the summary statistics of our balanced sample, which includes

759 observations from 33 countries over the years 1990-2012.

4.2 Model specification

Estimating and comparing Models (2) to (4)-(5) requires addressing several impor-

tant empirical challenges which complicate the identification of the policy effects:

accounting for both unobserved heterogeneity in the context of slowly changing

policy variables and for the endogeneity of the policy variables; implementing an

algorithm searching for thresholds in policy effectiveness; developing a model se-

lection procedure to compare the performance of the different models. Here we

briefly describe how we address these challenges. Appendix C provides a more

detailed discussion.

Unobserved heterogeneity and policy endogeneity.8 To address unob-

served heterogeneity and endogeneity, we follow two complementary strategies.

First, we control for unobserved heterogeneity using the pre-sample mean of the

dependent variable rather the relying on within-country variations. This approach

is better suited to deal with slow moving explanatory variables such as climate

8See Subsections C.1 and C.2 of Appendix C for a thorough presentation.
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policies (Blundell et al. 2002). Second, we address endogeneity concerns via a

shift-share instrumental variable (IV) approach which controls for reverse causal-

ity and omitted variable bias. For each country, our IV is built using information

on environmental policies implemented by a subset of similar countries. Similarity

here is defined according to the sharing of common legal origins, and is thus prede-

termined by construction (LaPorta et al. 1999). The exclusion restriction is that

the same legal origins are correlated with the general capacity to innovate, which

is included as control in our regression, rather than with the direction of innova-

tive activities. As suggested by (Wooldridge 2015), we implement this instrument

using a control function approach that is better suited to deal with non-linearities

and interaction terms. Overall, while the level of data aggregation does not allow

to fully resolve endogeneity issues in our context, our approach combining control

function and threshold models shows how to jointly tackle challenging estimation

issues.

Searching for threshold values of relative specialization.9 To search for

thresholds effects, we rely on the estimation and inference methodology developed

by Hansen (1999) to determine the number of concealed thresholds as well as

their values. This method introduces econometric techniques appropriate for the

detection of threshold value(s) of a given variable that condition the effect of

another variable. The key idea is that, rather than arbitrary imposing a threshold

value γ (Model 4) of specialization rK below and above which policy effectiveness

varies, the algorithm lets the threshold vary incrementally – percentile by percentile

– with rK, tests for non-linearities in policy effectiveness for every percentiles of

9Further details on the estimation of thresholds and inference thereof are presented in Ap-
pendix C.3.
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rK, and chooses threshold γ which minimises the sum of squared errors.

Clearly, this algorithm is attractive in that it imposes no prior on the loca-

tion of the threshold γ over the distribution of rK. Given the existence of one

threshold, the program searches for a second threshold iteratively using the first

threshold as given. Conditional on the existence of a first and a second thresh-

old, the same procedure is extended to determine whether additional thresholds

exist. Relative to the seminal contribution of Hansen (1999), we amend the model

in one important aspect. In his application on firm financial constraints, Hansen

(1999) interacts the threshold variable (long term debts) with one variable of in-

terest (cash flow). In our case, we interact the threshold variable, namely the

ratio of knowledge stocks rK, with the two policy variables of interest, namely

market-based (MB) and command-and-control (CC) policies.

Choice of best fit.10 Our objective is to choose the one specification which

most accurately reflects the underlying data generating process. Model (3) is

nested into Model (2), but threshold Models (4) and (5) do not represent uncon-

strained versions of Models (2) nor (3). Because all specifications share some com-

mon explanatory variables, we consider them as overlapping models. This excludes

the possibility of using the log-likelihood ratio test for nested models or Vuong’s

statistics for strictly non-nested models (Vuong 1989). Our strategy to determine

the best fit is to provide three sets of indicators suited for model selection in the

case of overlapping models: (i) the adjusted R-squared11; (ii) indicators based

on the Akaike information criterion (AIC), with a correction for small samples

10See Appendix C.4 for a detailed presentation of the procedure.
11Its most appealing feature is that its relationship with the number of explanatory variables

can either increase or decrease, depending on whether the additional regressor(s) brings valuable
information to the model
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(AICc)
12; (iii) Vuong’s 2LR statistics for overlapping models (Vuong 1989).13

5 Econometric Results

5.1 Results

Prerequisite for identification. The key identifying assumption is that the pol-

icy effort of countries with similar legal origins is uncorrelated with the direction of

technological change, conditional on the set of controls that absorb – among other

things – global knowledge spillovers (time fixed effects), the general innovation

capacity (knowledge stock lnK−(f+g),t−1) and different initial level in the direction

of technical change (pre-sample mean of the dependent variable). Although this

assumption is not testable per se, a clear indication of violation would be that

legal origins exhibits specific rates of innovation before the period of analysis. We

address this concern by comparing the compound annual growth rate of ln rKg/f,t

between 1985 and 1990 between groups of countries with different legal origins

by means of a T -test an F -test (see Table 2). This test does not reject the null

hypothesis that there are no pre-existing differences in the direction of innovation

across countries with different legal origins.

[Table 2 about here.]

Moreover, the control function approach allows for a simple test of policy en-

12Following Burnham & Anderson (2004), we use transformed values of AIC and AICc,
respectively exp(−△

2 ) and ω, as both can be interpreted as weights of evidence in favor of one
model vis-à-vis the others

13The latter is a two-by-two model comparison based on the usual log’s ratio statistics 2LR,
where the models compared refer to overlapping specifications displayed in Equations (2), (3)
and threshold specifications (4), (5) or any higher number of threshold deemed relevant.
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dogeneity by assessing the statistical significance of the first-stage residuals in the

second-stage regression (Wooldridge 2015). The results are reported in the last

row of Table 3. We find that the policy vector P is endogenous across the various

specifications, corroborating the use of the control function approach.14

Main results. Table 3 reports the results of the three models discussed in

Section 3. We first discuss the significance of the estimates, while we present a

comprehensive simulation aiming to quantify the policy effects in Subsection 5.2.

Column 1 shows the results of a parsimonious specification of the linear speci-

fication (Eq.2), which we label Linear 1P . This includes one environmental policy

index (ALL), which includes both MB and CC instruments as a homogeneous

block. First, ALL does not contribute to explain the direction of innovation to-

wards the more radical technology. Second, in line with Aghion et al. (2016) and

Noailly & Smeets (2015), the coefficient for ln rKg/f is positive and statistically

significant at the 1% level. This confirms path dependency in the direction of en-

ergy innovation: countries with more experience in renewable relative to fossil fuel

innovation have a comparative advantage in further specialization. While testify-

ing to the existence of a first-mover advantage for early innovators in the realm of

energy, this result also implies that laggard countries can be locked in a fossil fuel

technological paradigm. Third, we find no evidence that cross-fertilization plays

a role in steering innovation: the coefficients associated with lnKf and lnK−(f+g)

(i.e., the fossil fuel and overall knowledge stocks, respectively) are not significant.

Column 2 (Linear 2P ) allows for the effect of MB and CC instruments to

vary and shows that the direction of innovation is affected differently by policy

14The F-statistics of the first-stage regression reported at the bottom of Table D1 highlights
the strength of our vector of instruments.
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instruments of different nature. The coefficient of CC policies is both positive and

significant, while the one associated with MB policies is not. The aggregate policy

index in Column 1 masks heterogeneous impacts depending on the policy types.

This further motivates our focus on the distinct effects of CC and MB policies.

[Table 3 about here.]

Column 3 shows the results of estimating Model (3), where we interact lnKg/f

with the two policy variables. Two key results emerge. First, the coefficients of the

interaction terms indicate that MB policies are effective in redirecting innovation

towards renewable energy technologies only when the relative stock of compe-

tencies in these technologies is large enough. Observing that ∂ ln rKg/f/∂MB =

−1.408+ .837× ln rKg/f , we find that the effect of MB policies is negative for the

first two-thirds of lnKg/f , while it turns positive for the remaining 34 percentiles.15

Second, we find no evidence that the policy effectiveness of CC changes linearly

with specialization variable ln rKg/f .

Column 4 presents the results of the two-threshold specification (Model 5).16

The two-threshold specification reveals the existence of three regimes. In the

first regime, where ln rKg/f is low (below the 47th percentile), only CC policies

affect the direction of innovation towards renewables. The coefficient of MB is

not statistically different from zero, but its sign is consistent with the results

of Column 3 (interaction model). Hence, in this first regime, countries which

implement CC policies successfully steer innovation towards the novel technology

15More precisely, this effect is significantly negative below the 32th percentile of ln rKg/f , and

significantly positive above the 92th percentile.
16The point estimates of the two thresholds are 1.292 and 2.198, which correspond to respec-

tively the 47th and the 89th percentiles of the distribution of the threshold variable (ln rKg/f ).
See Subsection D.2 of Appendix D.
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and away from the incumbent one; this is not the case for countries which rely on

MB policy instruments. The second regime, which is characterized by values of

ln rKg/f between the 47th and the 89th percentile, gives similar results, although

the negative effect of MB policies disappears entirely. CC policies remain positive

and significant. Lastly, in the third regime, we observe a switch in the relative

effectiveness of the MB and CC policy instruments: the former become effective,

the latter ineffective. That is, a country that has accumulated a considerable

amount of experience in renewable as opposed to fossil fuel innovation (i.e., the

top 11% of the country-year observations in our sample) can rely exclusively on

market-based policies to ensure that innovation keeps away from the incumbent

technology and is directed towards the new technological paradigm.

Model selection. Table (4) provides information on the goodness of fit of

the various models. We compare the models sequentially: Column 1 (Linear 1P

model) and Column 2 (Linear 2P model); Column 2 and Column 3 (Interaction

model); Column 3 and Column 4 (Threshold model).

First, we observe a higher adjusted R-squared and LL value for the Linear 2P

model as compared to the Linear 1P model. Vuong’s 2LR statistics is negative

and significant (at 10% level), indicating that the Linear 2P model outperforms

the Linear 1P one. In a similar fashion, both the AIC and the AICc scores ex-

hibit lower values for the Linear 2P model. These results suggest that the the

distinction between MB and CC policies is statistically relevant – and economi-

cally meaningful – since it yields a significant increase in the explanatory power

of the model.

Second, we test whether the linear 2P model - which assumes a constant policy

21



effect - is outperformed by the interaction - which implies that the effectiveness

of policy is linearly dependent on the value of the specialization variable ln rKg/f .

Indeed, Vuong’s 2LR statistics is large, negative, and statistically highly signifi-

cant. Furthermore, the increase in the adjusted R-squared and reduction in the

LL, AIC, and AICc values are sizable. Thus, there is overwhelming evidence that

policy effectiveness differs depending on the country’s relative level of competen-

cies.

Third, we observe a higher adjusted R-squared, and lower values for the LL,

AIC and AICc for the threshold model as opposed to the interaction model.

Vuong’s 2LR statistics is negative and significant, pointing to the dominance of the

threshold specification. This implies that, if policy effectiveness depends on relative

competencies, it does so in a non-linear fashion. Since pairwise comparisons are

transitive, we conclude on the global dominance of the threshold specification vis-

à-vis all others. This is further confirmed by the two Akaike-based statistics, which

provide strong evidence of evidence in favor of the global dominance of one model

over all others, independently of whether we use AIC or AICc, both statistics

exp(−△
2
) or ω.

[Table 4 about here.]

Two important conclusions can be drawn from this exercise. First, the dis-

tinction between MB and CC policy matters when it comes to estimating their

impacts on energy innovation. Second, there are regimes across which policy ef-

fectiveness differs significantly and within which policy effectiveness is stable.

Decomposing policy effects on renewable and fossil-fuel innovation.

Given the nature of the dependent variable – defined as the ratio of renewable
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over fossil fuel innovation – it is key to understand how MB and CC affect the

numerator and/or the denominator, respectively. To this end, we run separate

regressions on the numerator and denominator of our dependent variable with the

same set of explanatory variables as in model 4. This allows us to distinguish

where the net policy effect stems from.17 In our so doing, we take the estimated

threshold as given and interact the MB and CC variables with dummy variables

representing each of the three regimes.

Table 5 displays the two models which explore separately the effect of the policy

instruments on the level of innovation in renewable (Model 5) and fossil-efficient

energy technologies (Model 6), alongside Model 4 from Table 3. The mechanisms

at play in the three regimes are different. In the first regime, CC policies promote

innovation in renewables, while MB policies promote innovation in fossil-efficient

technologies. In this first regime characterized by comparatively higher compe-

tencies in fossil-fuel innovation, CC policies, send a clear signal to private actors

on the future of fossil fuels within a country and deter brown innovation, while

MB policies are not successful. In the second regime, CC policies redirect inno-

vation towards green technologies exclusively. Conversely, MB policies start to

have a beneficial impact on innovation, but promote innovation in both fields. In

the third regime, MB policies provide actors with the necessary incentives to un-

dertake invention activities in carbon-free energy solutions. Differently from the

previous two regimes, CC policies do not display any inducement effect.

[Table 5 about here.]

17Because ln rkg/f = ln kg − ln kf , the reported parameter estimates pertaining to the de-
pendent variable ln rkg/f all sum to the estimate pertaining to ln kg and ln kf such that

β̂rkg/f
= β̂rkg

− β̂rkf
.
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Altogether, we conclude that three appropriate policy regimes exist. They are

defined as follows: P⋆
R1 = {CC}; P⋆

R2 = {CC;MB}; P⋆
R3 = {MB}. A policy is

deemed effective when the policy is activated under the appropriate policy regime.

5.2 Quantification

We quantify the effectiveness of policy regimes P⋆
R1, P

⋆
R2 and P⋆

R3 in redirecting

technical change towards renewable energy by simulating counterfactual policy

scenarios in which countries implement what we qualify as optimal policy choices,

conditional on regime in which the country-year observation belongs. We simulate

two scenarios: the optimal policy scenario at the observed level of stringency

(P⋆
obs) and the optimal policy scenario at the highest level of stringency (P⋆). We

compare these scenarios to the observed policy as implemented by each country

(Pobs).
18

Figure 3 provides the dynamics of the simulated variable of interest (the relative

specialization as proxied by the ratio of renewable to fossil fuel patent stock rK̃g/f )

up to year 2012 for six countries.19 A broad, but important, preliminary remark

is that the simulation results are consistent with what one should expect. The

performance of the observed policy vector Pobs ranks below that of appropriate

policy vectors where stringency is set at the countries’ observed value (P⋆
obs), which

itself ranks below the performance of of such appropriate policies implemented at

their highest stringency (P⋆). On the whole, the economic effect of policies in

directing technical change is quite substantial in all displayed countries.

18Appendix E provides the details of the simulation exercise.
19These countries are: China, Germany, France, Mexico, The Netherlands, and The USA.

They represent archetypal examples of simulated energy transitions over the three policy scenar-
ios. Figure E1 provides the simulation results for all countries in our sample.
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[Figure 3 about here.]

In the first row, we display results for Mexico and China, two countries which

are characterized by a very low initial level of green specialization, combined with

a low initial level of innovation output. Although the two countries display similar

observed dynamics of (rK̃Pobs

g/f , the black line), the simulations under different

policy scenarios P⋆
obs and P⋆ yield different dynamics of their specialization rK̃

and offer grounds for further interpretation.

Take Mexico. The fact that the black line depicting the outcome of observed

policies Pobs and appropriate policies set at the country’s maximum values (P⋆
obs)

display the same dynamics indicates that it is neither the choice nor the timing

of policies which prevented Mexico from increasing its relative specialization in

renewable technologies. Rather, it was the stringency of implemented policies

which proved too low to redirect innovation towards renewables. Instead, the gap

between the appropriate policies at the country’s maximum values (P⋆
obs) and

the appropriate policies at their highest possible intensity (P⋆) is evidence of the

inability of the country to break out from fossil fuel innovation comes from its lack

of commitment – a synonym for stringency of the chosen policies.

Differently from Mexico, China is characterized by inadequate policy timing

as well as inadequate policy intensity: both limit its ability to direct innovation

towards renewable technologies. In fact, the scenario with observed values repre-

sents an intermediate case that outperforms the scenario with observed policies

(hence there is an inadequate policy timing) and is outperformed by the scenario

with policies at the maximum (hence there is an inadequate policy intensity). In-

terestingly, the policy diagnosis which characterizes China applies to a large panel
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of countries in the sample, including countries with higher initial level of special-

ization, and stronger initial innovation capabilities.20

In many countries, the dynamics of rKg/f stemming from observed policies

P⋆
obs locates somewhat far from the dynamics stemming from appropriate policies

P⋆. This is the case, for instance, for Germany and the Netherlands, but with

different policy implications. In the case of Germany, we observe policies choices

(black line) that conforms to appropriate policies (red line), although with a delay.

Starting from 2004 onwards, the shape and slope of the black curve perfectly mimic

that of the red curve, indicating the set of implemented policies conform to ap-

propriate policies.The simulated dynamics for the Netherlands, although similar,

offers a slightly different interpretation. Up until 2006, the simulated dynamics

of rKg/f stemming from observed policies Pobs is clearly negative, thereby dis-

playing an increase in specialization in fossil-based innovation. This is consistent

with IEA (2020), which comments that the country remains heavily reliant on

fossil fuels, although notable progress towards carbon-neutral economy are note-

worthy.Once observed policies conform to appropriate policies, the country swiftly

moves towards the third regime.

In the last row, we show two countries with yet different dynamics. Both France

and the US provide policies in support of innovation but fail to direct innovation

towards renewable technologies. In France, P⋆
obs could suffice in reaching the third

regime. Therefore, the problem does not lie in its policy stringency, rather in its

timing. In fact, implemented policies Pobs drag the innovation further away from

the second regime and towards the first. Altogether, France displays a poor policy

choice. This is consistent with the fact that France has chosen to make nuclear

20See Figure E1 in Appendix E.
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energy its main energy source21 downplaying the development of renewable energy

sources as a key policy objective.

The USA is a clear example where the observed policy stringency performs

exceptionally well in the first and second regime (command-and-control policy),

and exceptionally poorly in the third innovation regime (market-based policies)

given the country’s level of relative specialization. In fact, the observed values in

rKg/f displayed under P⋆
obs (MB policies in the third regime) are so low that it

prevents the country from remaining in the third regime, as implied by cyclical

pattern of the gray line. Once in the third regime, the stringency MB policies is so

poor that the high level of specialization rKg/f cannot be sustained, and declines.

6 Conclusion

We have examined how policy choice - i.e., the combination of market-based and

command-and-control policy instruments - affects the direction of innovation to-

wards renewable and away from fossil-fuel energy technologies. We conclude that,

depending on the level of a country’s relative capabilities, there exists three ef-

fective policy regimes to break out from focusing primarily on fossil-fuel-based

innovation: a first regime in which command-and-control policies alone are imple-

mented; a second regime in which market-based policies are added to the policy

portfolio; a third regime in which command-and-control policies are phased out.

Our simulations also yield three broader conclusions. First, the time needed to

reach the last innovation regime may be relatively swift. When policies are imple-

mented in the appropriate regimes, a given country may reach the last innovation

21Although the country performs poorly in renewable energy innovation relative to fossil fuel
innovation, it also performs extremely well in terms of per capita gas emission.
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regime within a decade. Instead, countries which do not activate the appropriate

policy given their level of specialization may never succeed in directing technical

change. Second, accumulated competences in the new technology matter. It takes

longer for countries lagging behind in their specialization in renewable energy, rel-

ative to efficient fossil-fuel energy, to reach the third regime. This underlines the

necessity for all countries to provide direct public support for R&D investments to

build their competence base. Third, in directing technical change, the policy effects

are always bounded in time. The systematic concavity of our simulation implies

that the marginal effect of appropriate policies, initially substantial, depreciate

overtimes. Once in a regime, policy effectiveness has exhausted the possibilities

offered by the new policy in directing technical change.

Policymakers should address three key aspects when designing policies. First,

they must carefully compose policy portfolios, which include diverse instruments

whose rationales, mechanisms and expected effects come with a great deal of het-

erogeneity. Second, policy stringency is crucial; without sufficient commitment,

even well-designed portfolios may fail. Finally, timing is critical, as the same policy

composition and stringency may yield opposite effects depending on the context.

For instance, market-based policies, which always steer innovation towards the

technology in which the country is specialized, may eventually misdirect efforts if

implemented too early or in isolation.

Altogether, our main result is crystal clear. The set of policies implemented

are paramount in directing innovation towards novel technologies. Choosing the

appropriate policy at the appropriate time, and correctly timing the sequencing of

policy instruments, can yield a swift transition towards a greener economy.
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Figure 1: Evolution of renewable patent counts kg, of fossil fuel patents counts
Pkf , and of the ratio of the two patent counts (rk) for selected OECD and non-
OECD countries
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Figure 2: Evolution of the threshold variable rK and of MB and CC policy scores
for selected OECD and non-OECD countries
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Figure 3: Simulating the dynamics of the renewable to fossil-fuel patent stock
ln rK under alternative policy scenarios.
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Table 2: Results of Common Trends Hypothesis

H0 H1 Test Statistics P -value

µUK = µ−UK µUK ̸= µ−UK T -test 0.892 .379

µFR = µ−FR µFR ̸= µ−FR T -test 0.390 .700

µEE = µEE µEE ̸= µ−EE T -test 2.656 .012

µGE = µ−GE µGE ̸= µ−GE T -test 0.347 .731

µSC = µ−SC µSC ̸= µ−SC T -test 0.987 .331

All growth rates are equal At least one growth rate differs F -test 1.740 .169

The variable of interest is the compound annual growth rates of the ratio of knowledge stocks in renewable
energy over the knowledge stocks in fossil fuels ln rKg/f,t between 1985 and 1990. UK refers to countries
abiding by the legal origins of United Kingdom. FR refers to countries abiding by the legal origins of France.
EE refers to countries abiding by the legal origins of Eastern Europe. GE refers to countries abiding by
the legal origins of Germany. SC refers to countries abiding by the legal origins of Scandinavia.
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Table 3: Parameter estimates for the policy-induced model of green innovation

Linear 1P Linear 2P Interaction Threshold

(1) (2) (3) (4)

ln rKg/f,t−1 0.400*** 0.411*** 0.225** 0.258**
(0.122) (0.116) (0.114) (0.108)

lnKf,t−1 0.003 -0.046 -0.061 -0.080
(0.164) (0.120) (0.118) (0.125)

lnK−(f+g),t−1 0.144 0.139 0.172* 0.176*
(0.111) (0.095) (0.092) (0.095)

ALL policies 0.158
(1.999)

MB policies 0.129 -1.408*
(0.391) (0.735)

MB × ln rKg/f,t−1 0.837*
(0.492)

CC policies 1.161** 0.816
(0.510) (0.645)

CC × ln rKg/f,t−1 0.202
(0.353)

MB × 1(ln rKg/f,t−1 ≤ γ̂r
1) -0.692

(0.576)

MB × 1(γ̂r
1 < ln rKg/f,t−1 ≤ γ̂2) -0.021

(0.506)

MB × 1(ln rKg/f,t−1 > γ̂2) 1.680*
(0.947)

CC × 1(ln rKg/f,t−1 ≤ γ̂r
1) 1.130**

(0.499)

CC × 1(γ̂r
1 < ln rKg/f,t−1 ≤ γ̂2) 1.371**

(0.628)

CC × 1(ln rKg/f,t−1 > γ̂2) 0.609
(0.789)

F -Stat H0: Exogeneity of P 2.75* 3.70 9.71** 11.09*

Dependent Variable: (Log of the) Ratio of renewable to fossil fuel patents (ln rkg/f,it). N = 759.
Bootstrapped standard errors in parentheses produced from 1,000 block-bootstrapped samples. ***
p<0.01, ** p<0.05, * p<0.1. See Appendix C for details about the estimation methods. Values
(percentiles) of the two thresholds are γ̂r

1 = 1.292 (47th percentile) and γ̂2 = 2.198 (89th percentile)
(see Table D2). All regressions include a full vector of unreported year fixed effects, a dummy
variable for observations with no fossil fuel patent production (kf,t = 0). The set of unreported
control variables is: lnEP : Electricity production (in kW, in logs); lnEC: Electricity consumption
per capita (in kW per hour, in logs); EM : electricity import share in domestic production; EX:
electricity export share in domestic production; HC: Human capital index;lnGDP : GDP (in thou-
sands of 2011 USD PPP, in logs);lnPOP : Population (in logs). Regressions also include unreported
control function errors from a first IV stage on policy variable MB and CC.
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Table 4: Model comparison between the linear, interaction and threshold specifi-
cations. Assessing goodness of fit measures

Linear 1P Linear 2P Interaction Threshold

R-squared 0.647 0.655 0.670 0.676
Adjusted R-squared 0.629 0.637 0.651 0.655

LL -613.8 -605.2 -587.7 -580.9

Vuong’s 2LR -17.217 -34.907 -13.535
Pr(F ⪰ G) 0.091 0.000 0.041
Pr(F ≺ G) 0.909 1.000 0.959

AIC 1301.6 1288.4 1261.4 1255.9

Akaike exp(−△
2 ) 0.000 0.000 0.063 1.000

Akaike ω 0.000 0.000 0.059 0.941

AICc 1305.5 1292.7 1266.7 1262.3

Akaike exp(−△c

2 ) 0.000 0.000 0.106 1.000
Akaike ωc 0.000 0.000 0.096 0.904

Dependent Variable: (Log of the) Ratio of renewable to fossil fuel patents (ln rkg/f,it).
N = 759. Linear 1P refers the case where the policy vector reduces to a scalar
(only one policy including both MB and CC policies) using Equation (2. Linear
2P uses to Equation (2) where the policy vector distinguishes MB and CC policies.
Vuong’s ratio 2LR statistics for partially overlapping models compares the current
specification (G) with the specification of the previous column (F) as in the case
of the LR test: Vuong’s ratio 2LR = LLF − LLG. A positive value indicates that
specification F is to be preferred over specification G: F ⪰ G. A negative value
indicates that specification G is to be preferred over specification F: F ≺ G. The
last two rows provide critical probability values for Vuong’s 2LR produced from 1,000
blocked bootstrapped samples.
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Table 5: Threshold regressions using as the dependent variable the log of ratio of
renewable over fossil fuel patents (rkg/f,t), the number of renewable patents (kg)
and the number of fossil fuel patents (Kf ), respectively

(4) (5) (6) (7) (8)

ln rkg/f ln kg ln kf ln kg ln kf

ln rKg/f,t−1 0.258** 0.522*** 0.265***
(0.108) (0.099) (0.103)

lnKg,t−1 0.546*** 0.174
(0.099) (0.113)

lnKf,t−1 -0.080 0.645*** 0.725*** 0.183* 0.461***
(0.125) (0.120) (0.111) (0.100) (0.083)

lnK−(g+f),t−1 0.176* 0.051 -0.125 0.001 -0.108
(0.095) (0.097) (0.079) (0.094) (0.088)

MB × 1(ln rKg/f,t−1 ≤ γ̂r
1) -0.692 0.891 1.584*** 0.679 0.888

(0.576) (0.554) (0.563) (0.591) (0.640)

MB × 1(γ̂r
1 < ln rKg/f,t−1 ≤ γ̂2) -0.021 0.706* 0.727* 0.644* 0.723

(0.506) (0.386) (0.439) (0.387) (0.441)

MB × 1(ln rKg/f,t−1 > γ̂2) 1.680* 2.217*** 0.538 1.829*** 1.015
(0.947) (0.733) (0.882) (0.708) (0.931)

CC × 1(ln rKg/f,t−1 ≤ γ̂r
1) 1.130** 0.918** -0.211 0.874** 0.292

(0.499) (0.376) (0.506) (0.388) (0.443)

CC × 1(γ̂r
1 < ln rKg/f,t−1 ≤ γ̂2) 1.371** 1.317*** -0.054 1.105** 0.001

(0.628) (0.471) (0.559) (0.519) (0.497)

CC × 1(ln rKg/f,t−1 > γ̂2) 0.609 0.596 -0.013 0.636 -0.164
(0.789) (0.735) (0.794) (0.736) (0.838)

F -Stat H0: Exogeneity of P 11.09* 18.73*** 8.74 11.81* 5.845

Bootstrapped standard errors in parentheses produced from 1,000 block-bootstrapped samples. *** p<0.01,
** p<0.05, * p<0.1. See Appendix C for details about the estimation method. Values (percentiles) of the two
thresholds are γ̂r

1 = 1.292 (47th percentile) and γ̂2 = 2.198 (89th percentile) (see Table D2). All regressions
include a full vector of unreported year fixed effects, a dummy variable for observations with no fossil fuel patent
production (kf,t = 0). The set of control variables is: MB: market based policies; CC: command-and-control
policies; lnEP : Electricity production (in kW, in logs); lnEC: Electricity consumption per capita (in kW per
hour, in logs); EM : electricity import share in domestic production; EX: electricity export share in domestic
production; HC: Human capital index;lnGDP : GDP (in thousands of 2011 USD PPP, in logs);lnPOP :
Population (in logs). Regressions also include unreported control function errors from a first IV stage on policy
variable MB and CC.



Appendix A. Modelling the direction of techni-

cal change

The theoretical framework is composed of two building blocks. First, we consider

a Cobb-Douglas knowledge production function where new knowledge stems from

an existing stock of knowledge. We augment it with a policy vector which may

spur innovation beyond the role of accumulated scientific knowledge. Second, we

introduce heterogeneity in research domains, giving rise to the potential presence

of rivalry and spillovers across research domains. Our model builds upon, but

is different from, standard models of directed technical change such as Acemoglu

et al. (2012). We specifically focus on the innovation production function, our main

variables of interest being policy instruments of different nature, in order to better

understand how these instruments affect innovation in competing technologies.

The starting point of our analysis is the aggregate Cobb-Douglas knowledge

production function augmented with a policy vector P. Abstracting from sub-

scripts i and t accounting for country i at time t, this reads as:

k = AKβKCBCeBP×P+υ, (A1)

where k and K represent knowledge flow – or innovation – and knowledge stock

– reflecting past innovations. Knowledge flow k is accounted for at the end of a

given period of time, whereas the knowledge stock variable K is measured at the

beginning of the period considered. A positive coefficient βK reveals the cumulative

nature of the innovative process: new ideas are more likely to emerge from an

existing stock of ideas. Policy vector P accounts for policies, whose effects BP
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represent the core of our investigation (See Section 4). VectorC includes additional

structural factors, which may affect innovation beyond and above the chief role of

knowledge stock K and policy vector P. It includes, inter alia, human capital,

GDP per capita, electricity consumption and production. Parameter υ is composed

of time and country fixed effects as well as idiosyncratic shocks that may randomly

affect knowledge production. Whereas the knowledge stock variable K is lagged

one year, innovation k, vectors P and C are contemporaneous.

Equation A1 considers overall knowledge production as a function of overall

knowledge stock, irrespective of scientific domains or realm of applications. Thus it

is silent on whether policies promote the shift towards one or the other technology

domain, nor can it consider potential spillovers across scientific and technical fields.

However, often several competing technologies are available. This is the case for

low-emission energy innovation, which comprise carbon-free renewable technologies

representing a novel and more radical innovation, and fossil-efficient technologies

representing an established, incumbent innovation. It is useful to consider two

specific domains g and f , respectively.22 We obtain a system of two equations:


kg = AgK

βKg
g K

βK−g

−g CBg,CeBg,P×P+υg

kf = AfK
βKf

f K
βK−f

−f CBf ,CeBf ,P×P+υf

(A2)

where Kg (resp. Kf ) and K−g (resp. K−f ) represents scientific and technological

knowledge stocks in realm g (resp. f) and in all other scientific domains excluding

realm g (resp. f). Moreover, Model (A2) introduces the possibility of positive

spillovers from general knowledge to innovation in realm g and/or f , implying

22Hence, d = {g; f}; g stands for green and f stands for fossil.
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that βK−g > 0 and/or βK−f
> 0 [cite] This also gives rise to the possibility of path

dependence where accumulated knowledge reinforces future innovation in the same

technological domain. Hence past experience in a domain also reduces the scope

for venturing into new fields.

Model (A2) displays the main building blocks of how policies relate with ex-

pected outcomes, controlling for past innovation and several additional factors.

The presence of two alternative domains, however complementary, raises the is-

sues of policy effectiveness in directing technical change. Following standard theory

(Acemoglu et al. 2012), we divide the two equations above. We obtain a reduced-

form specification whose estimated set of coefficients can be interpreted as guiding

technical change in one specific direction at the expense of the other.

Formally, rewrite βKf
= βKg + βKf ′

and substitute this in the second equation

pertaining to fossil fuels innovation. Assume further that fields g and f quantita-

tively represent minor shares of the overall stock of knowledge K, implying that

K−g ≃ K−f ≃ K−(g+f), where K−(g+f) = K−Kg−Kf . Dividing the first equation

pertaining to field g with that pertaining to field f yields:

rk = rA · rKβKg ·K
−βKf ′

f ·K
βK−(g+f)

−(g+f) ·CBC · eBP×P+ϵ, (A3)

where prefix r implies relative values for k, A and K, such that rk = kg/kf ,

rA = Ag/Af , and rK = Kg/Kf , BC = Bg,C −Bf ,C and BP = Bg,P −Bf ,P, and

ϵ = υg − υf . Note also that a positive (resp. negative) sign for βKf ′
implies that

βKf
> βKg (resp. βKf

< βKg).

The newly defined dependent variable rk = kg/kf expresses the direction cho-

sen by a country regarding carbon-free vs. carbon-efficient innovation, i.e. higher
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values of rk imply a stronger commitment towards a radical solution to climate

change. Hence another interpretation of rk is that it expresses the direction of

innovation towards renewable energy – a path-breaking solution to global warm-

ing – relative to fossil-efficient energy – a transitory and incomplete solution to

global warming. In a similar fashion, variable rK = Kg/Kf represents the level

of accumulated competences in renewable energy sources relative to competence

accumulation in fossil fuel energy sources. Higher values of rK imply more special-

ization towards sustainable growth as opposed to the current paradigm of economic

growth.

Model (A3) represents the benchmark of our empirical analysis.
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Appendix B. Patent statistics

We use patent data to construct both the dependent variable – which measures the

direction of innovative activity – as well as the threshold variable – which measures

relative specialization between the two competing technologies.

Patent databases represent a systematic, and nearly exhaustive, source of in-

formation about innovative activities across countries and overtime. They gather

information on patent holder, assignee location, priority date, and a series of tech-

nology classes useful to characterize the technical content of the patent. Since

the seminal work of Griliches (1990), patent statistics have been extensively used

in the innovation literature (e.g. Jaffe 1986, Audretsch & Feldman 1996, among

many others), although they come with certain limitations such as heterogeneity

in quality, cross-country differences in patenting incentive criteria (see Archibugi

1992, for a detailed discussion). However, patent statistics is unique in provid-

ing information about current and past investments by fined-grained technological

domain.

The dependent variable is defined as the ratio of zero-carbon (renewable) to

carbon-efficient (fossil fuel) patents in country i and year t. Patent data has been

widely used as a proxy for innovation (Griliches 1990, Popp et al. 2010), and one

that allows to distinguish between renewable and efficient fossil fuel technologies

(Lanzi et al. 2011, Haščič & Migotto 2015). We rely on the Y02E classification

generated by the European Patent Office. We extract data from the PATSTAT

World Patent Statistics Database, Autumn 2020 version. We select applications

to the EPO by any inventor country and earliest filing year, and limit sample to

patents which have at least one duplicate in another patenting authority (Haščič
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et al. 2015, Haščič & Migotto 2015) - that is, we focus on patents with a family

size of at least two. Furthermore, being a proxy for innovation, patent statistics

inherently capture the effect of past supply-side policies in support of innovation,

such as public R&D investments or subsidies for innovation.

We then aggregate patents at the inventor country level distinguishing renew-

able from efficient fossil-fuel-based technologies. Renewable technologies are solar,

wind, geothermal, marine, and hydro as well as technologies for energy generation

from biomass and waste. They include patents in subclasses 10/00, namely en-

ergy generation through renewable energy sources – geothermal, hydro, oceanic,

solar (PV and thermal), wind – as well as 50/00, namely technologies for the pro-

duction of fuel of non-fossil origin – biofuels and waste. Efficient fossil-fuel-based

technologies improve output efficiency (e.g. combined heat and power and com-

bined cycles) and input efficiency (e.g. efficient combustion or heat usage) or allow

an efficient electrical power generation and transmission. They encompass patents

in subclasses 20/00, namely combustion technologies with mitigation potential –

CHP, CCPP, IGCC, synair, cold flame, etc. – and subclass 40/00 Technologies for

efficient electrical power generation, transmission or distribution – such as reactive

power compensation and super- conductors.23

The threshold variable, measuring each country’s level of specialization in re-

newable relative to efficient fossil fuel technologies, is also based on patent statis-

tics. Specifically, for each country and each year we compute the knowledge stocks

for both renewable and efficient fossil energy technologies. Following Verdolini &

Galeotti (2011), to compute the stock variables, we rely on the perpetual inven-

23For a more detailed discussion of the different technologies, please refer to the OECD ENV-
TECH classification.
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tory method to compute knowledge stocks in renewables and efficient fossil fuel

technologies. More specifically, the knowledge stock in domain d is obtained as:

Kidt = kidt + (1 − δ)Kidt−1 where we set δ = 0.1. The initial value of the knowl-

edge stock is defined as K0 =
kidt0
(ḡs+δ)

, with r̄d being the average rate of growth of

patenting in technology domain d for the period between t0 and t0 − 4. We use

t0 = 1984 as the initial year to compute knowledge stock. The threshold variable

is then defined as the ratio between the knowledge stocks for renewable over the

knowledge stock for fossil energy innovations for each country and each year.
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Appendix C. Econometric implementation

C.1 Unobserved heterogeneity with slowly changing policy

variables

Following previous literature on environmental innovation (Nesta et al. 2014, Aghion

et al. 2016), our motivation lies in the fact that, although there is a time varia-

tion in the policy variables, such measures change only slowly over time. In such

context, the use of within transformations would withdraw a large share of the

identifying variation, possibly leading to inconsistent estimates of the parameters

of interest BP (Blundell et al. 2002). In the presence of pre-sample information,

we augment the three models where PSMi = r̄kip =
1

TP

∑TP−1
r=0 rki,0−r represents

the pre-sample mean which grasps persistent differences across countries, and TP

represents the number of pre-sample years.24

C.2 A control function approach to policy endogeneity

A key requirement for a causal interpretation of the policy inducement effects is

the exogeneity of the environmental policies variables. This requirement is likely

to be violated in our context for at least three reasons. First, policy choices

depend upon the expected effectiveness of the policy in terms of both economic

24One objection against the use of the pre-sample mean is that the presence of less devel-
oped countries in our sample may substantially decrease its variance. Should this be the case,
one would not be able to properly account for unobserved heterogeneity among less developed
countries. We test this by first assuming that the pre-sample mean follows a normal distribution
PSM ∼ N(µ, σ). We then condition parameters µ and σ on the log of GDP per capita using
maximum likelihood estimation methods. Results show that whereas µ is positively associated
with GDP per capita, the variance of the distribution captured by parameter σ is independent
from the level of development of the country, implying that the country fixed effects can be
accounted for using the pre-sample mean. Results are available upon request.
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and environmental outcomes. For instance, a policy maker of a technologically

laggard (resp. leading) country can correctly forecast that a given environmental

policy will have little (resp. large) effect on the country’s capacity to redirect

energy innovations. Likewise, efforts by fossil fuel lobbies can damper the policy

response depending on the expected policy effect on vested interests. As a result,

the policy response will positively depend on the current degree of specialization

in energy technologies, leading to an upward bias in the coefficients of interest.25

Second, a well-known argument postulates that policy interventions should be

temporary and support renewable energy only during an initial phase of techno-

logical development, that is, when these technologies are significantly more costly

than fossil fuel-based technologies. In more mature stages, technological develop-

ment in renewable energy can proceed independently from the existence of a policy

support (Acemoglu et al. 2012). Indeed, there is some evidence in our data that

the stringency ofMB policies has decreased for certain periods in leading countries

such as Germany, Denmark and Spain. This source of estimation bias counter-

balances the previous one, thus it remains an empirical issue to assess which one

prevails.

Third, another source of endogeneity arises from errors in the measurement of

MB and CC policies. Our policy stringency measures assign a time-varying cate-

gorical score to each country. This score is in turn based on underlying continuous

data on the stringency of several policy instruments, such as taxes and feed-in

25For instance, fossil fuel lobbies have been very powerful to ensure subsidies to fossil fuel ex-
traction, production and research activities. These subsidies, partly unobservable, are expected
to be negatively correlated with both green innovation and policies, If, as plausible, fossil fuel
subsidies are negatively correlated with both renewable energy policies and with our main depen-
dent variable (i.e., the ratio between renewable and fossil fuel patents), the estimated coefficients
of environmental policies should be biased upwards.

51



tariffs (Botta & Kozluk 2014). This approach mechanically creates a source of

measurement error. Typically, if the measurement error is only on the explana-

tory variable and normally distributed, it is expected to give rise to a downward

bias in the estimates.

To address the above concerns related to reverse causality, omitted variable bias

and measurement error, we use a control function approach. While such approach

is very similar to a classical instrumental variable approach, it is recommended to

deal with specifications where the endogenous explanatory variable has a nonlinear

effect on the dependent variable (Wooldridge 2015). The basic idea is that the

residuals from a first stage regression – in which the policy indicator is regressed

over the vector of controls and excluded instruments discussed below– account for

policy endogeneity in the second stage by absorbing the part of the policy variation

that is correlated with energy innovation.

Building a suitable instrument of policy varying at the country level is chal-

lenging since policy variation is affected by several unobservable confounders. In

this paper, we propose a leave-one-out instrument that considers for country i a

weighted average of environmental policies in countries other than i but sharing

the same legal origins (LaPorta et al. 1999). The weights of the instruments are

based on a similarity index, calculated as the angular distance (Jaffe 1986), be-

tween a vector of institutional characteristics of country i and another country j

sharing the same legal origins.26 Our instrumental variables read:

26The vector of institutional characteristics include an index measuring corruption in govern-
ment, an index rating property rights protection, an index measuring the level of tax compliance
and an index of political rights. Detailed description of all these variables as well as the database
can be found in LaPorta et al. (1999).
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P̄i,t =
1∑

N ϕi,j

∑
j ̸=i

ϕi,jωi,jPj,t (C1)

where P is either MB or CC, ϕi,j is an indicator set to unity if country i and

country j share the same legal origin, and ω =
S′
iSj[

(S′
iSi)(S′

jSj)
]1/2 is the uncentered

correlation coefficient between the two vectors containing the four indexes of in-

stitutional characteristics for any couple of countries i and j in our sample; ω is

equal to 1 when i and j have identical institutional characteristics, and equal to

zero when they are most dissimilar.

Exploiting similarities between countries of the same legal origin ensures that

the instrument is strong and, at the same time, exhibits enough variation, both

within and between countries. The exclusion restriction is that the sources of en-

dogeneity are mitigated by considering policy variation in other countries. That is:

conditional on country specific controls, the weighted average of the policy varia-

tion in other countries except i is not correlated with energy innovation in country

i. An example may help understand how the instrument work. Spain, France and

Italy share similar institutional characteristics. However, only Spain has a clear

leader company in renewable energy innovation, e.g. Gamesa. In turn, France

and Italy have two well-established utilities that are adapting to a low carbon

economy. The first and second sources of endogeneity are likely to go in opposite

direction in those three countries in spite of the fact that those countries share the

same institutions. Thus, the instrument is successful in mitigating endogeneity in

this case. Basically, the instrument leverages the fact that the energy sector, and

thus the source of lobbying in it, is highly heterogeneous across countries sharing

the same institutional setup. Recall, however, that in cross-country analyses there
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is no ideal source of exogenous policy variation, thus the instrumental variable

approach should be seen as a way to mitigate rather than fully solve endogeneity

problems.

The control function approach to endogeneity implies the use of extra-regressors,

our vector of instruments P̄ , to annihilate the correlation between the endogenous

policy variables and the error term in our models of interest. Implementation

implies a two-stage process as follows:

P = f(X,C) + δP̄ + ν (C2)

ln rk = f(X,C) + g(P) + ρν̂ + ε (C3)

where the first equation represents the first-stage and the second equation rep-

resents the second stage, that is, any of Models (2), ( 3) and (4). Vector g(P)

represents the various policy vectors across the linear, interaction and threshold

models. The key part here is the inclusion of ν̂ in the main equation. By construc-

tion, residual ν̂ ensures that the newly obtained error term of the second equation

ε be uncorrelated with X, C, policy vector P as well as with ν̂: E((X,C)′ε) = 0,

E(P′ε) = 0, and E(ν̂ ′ε) = 0. Importantly, the inclusion of a generated regressor

on the left-hand-side implies the use of block-bootstrapped standard errors.

Although two-stage least squares and control function approaches yield the

same coefficient, the advantage of relying on the latter is that it allows for a direct

test of endogeneity of the policy variable (Wooldridge 2015). In fact a simple joint

F -test for vector ν̂ in the second stage allows testing for policy endogeneity. A
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significant F -statistics would imply that the policy variables are indeed endoge-

nous. The converse would imply exogeneity of the policy variables. We report

such endogeneity test for the policy variable at the bottom of the tables of results.

Second, we need to make sure that our set of instruments P̄ do bring relevant

information in their prediction for P. As prescribed in Angrist & Pischke (2009,

p.217), we report the F -statistics pertaining to the first stage equation. The

rule of thumb implies that an F -statistics exceeding a value of 10 implies string

instruments, legitimating the use of our instruments vector.

C.3 Estimation of thresholds

We rely on the estimation and inference methodology developed by (Hansen 1999)

to determine the number of concealed thresholds as well as their values. The

key idea is that the algorithm lets the threshold vary incrementally – percentile

by percentile – with the threshold variable rK and chooses threshold γ which

minimises the sum of squared errors.

In a nutshell, the minimization program starts by estimating a one-threshold

model by: (i) sorting the threshold variable rK; (ii) eliminating the smallest and

largest 10%. The remaining N values of rK constitute the candidate values γ;

(iii) for each of these N values, the algorithm estimates regression (4) to generate

the corresponding sum of squared errors; (iv) the smallest value of the latter yields

the estimate γ̂; (v) the preferred value for γ̂ is used to compare the explanatory

power of the one threshold model with that of a model with no threshold; (vi) if

the former is preferred over the latter, the value γ̂1 is taken as a threshold and

the program searches for a second threshold iteratively using the two-thresholds.
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Conditional on the existence of a first and a second threshold, a similar procedure

is followed to determine whether additional thresholds exist.

To retrieve an estimate of γ, we first define k, the column vector stacking all

observations of the dependent variable ln rK; k̂(γ), the corresponding vector of

predicted values by estimating Equation (4) and the vector of residuals ê(γ) =

k− k̂(γ). The algorithm proposed by Hansen (1999) chooses γ so as to minimizes

the sum of squared errors S1(γ), where S1(γ) = ê(γ)′ê(γ). More precisely, the

estimator of γ̂ reads:

γ̂ = argmin
γ

S1(γ). (C4)

The computation of the least squares estimate of the threshold γ involves the

minimization exercise C4. To do so, we first sort the threshold variable rK in

ascending order and exclude the bottom and top 5% of observations. This step

is to rule out regimes which would include too few observations below or above

an obtained threshold. The remaining observations represent the set of values

over which the optimal γ̂ is determined. Using Equation in (4), we obtain the

sum of squared errors ê(γ) and its associated S1(γ). The smallest value for S1(γ)

determines the threshold value γ̂.

As previously mentioned, Hansen (1999)’s method can be generalized to any

number of thresholds. In the case of two thresholds for example, one strategy

could be to search simultaneously for (γ1, γ2) by minimizing S2(γ1, γ2). While

this seems to be a reasonable path to take, the scope of search over the entire

grid may be computationally cumbersome.27 Rather, Hansen (1999) suggests to

27A search grid over (γ1, γ2) requires a significant number of regressions. If the search operates
on the percentiles of the threshold variables, the search grid that would trim the bottom and
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proceed sequentially by taking threshold γ̂1 as given and searching for γ2 over the

threshold variable rK by minimizing S2(γ̂1, γ2).
28 Fixing γ1 to γ̂1, the minimization

program to identify the second threshold can be written as:

γ̂2 = argmin
γ2

S2

(
γ2
∣∣
γ1=γ̂1

)
. (C5)

Once the vector of thresholds γ̂ has been identified, two additional steps are

needed. The first one regards the significance of the threshold and tests whether

the two identified regimes are significantly different from one another, the null

hypothesis being H0 : β1 = β2, where 1 and 2 refer to the first and second regimes,

respectively. The second step concerns efficiency in order to determine the 95%

confidence interval of the threshold likely values, with the null hypothesis being

H0 : γ̂ = γ∗.

Concerning the first step, inference on γ̂ is achieved by comparing the model

with no threshold as displayed in Eq. 2 with model 4. This is achieved by com-

puting the likelihood ratio test H0 based on:

F1 =
S0 − S1(γ̂)

σ̂2
, (C6)

Because the distribution of F1 is non standard and depends upon moments

of the sample, critical values for F1 cannot be tabulated. We therefore follow

Hansen (1999) and use the bootstrapped strategy as follows. We first randomly

top 5 percent would require 902 = 8, 100 regressions. Because of our relatively small sample size,
our search operate on observations rather than percentiles, yielding N2 regressions. Setting N
to 700 as in our case would necessitate 490,000 regressions. Clearly, a search grid for a higher
order number of thresholds rapidly becomes prohibitive.

28Because it is important to have a minimum number of observations in each regime, we
restrict the search over rK so that the distance between γ̂1 and γ̂2 amounts to at least a decile.
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draw with replacement n countries in order to produce a bootstrapped sample

of size N = n × T of errors ê from the no-threshold model. We then stack these

bootstrapped errors and add them to k̂, where k̂ represents predicted outcome from

the model without threshold. Using the bootstrapped sample, we then estimate

specifications 2 and 4 and compute the likelihood ratio statistics F1. We repeat

this procedure a sufficiently large number of times and count the number of times

for which the simulated statistics for F1 exceeds the actual one. The share of

samples where the simulated F1 exceeds the original one is used as the critical

probability value. The null hypothesis of no threshold is rejected when the p-value

is smaller than the desired critical value.29

The second step is concerned with efficiency, the null hypothesis being H0 :

γ̂ = γ∗. We follow Hansen (1999) and use the likelihood ratio statistics LR1(γ
∗)

as follows:

LR1(γ) =
S1(γ)− S1(γ̂)

σ̂2
, (C7)

where σ = 1
n(T−1)

S1(γ̂). Hansen (1999) shows that this statistics follows the dis-

tribution function Pr(LR1(γ) ≤ x) = (1 − exp(−x/2))2, with inverse function

c(α) = −2 ln(1 −
√

(1− α)), where α is the chosen critical probability value at

which one fails to reject the null H0. For example, the null hypothesis is rejected

at the 5% level when the LR statistics exceeds c(α = .05) = 7.35. To form a

confidence interval for γ, the no-rejection region of the (1− α) confidence level is

the set of values for which LR1(γ) ≤ c(α = 0.05). This is done by plotting the

LR1(γ) and drawing a flat line at c(α = 0.05) (see Hansen 1999, pages 351-352).

29For models with a number Γ of thresholds, this procedure uses predicted outcome k̂ and
residual ê with Γ− 1 thresholds.
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Hansen (1999)’s method can be generalized to any higher number of thresholds.

Conditional on having identified one threshold, we may then search for a higher

number of thresholds.We set the maximum number of possible thresholds to three,

implying potentially four types of policy regimes. In the two- and three-threshold

models, the likelihood ratio statistics reads, respectively:

LR2(γ) =
S2(γ2)− S2(γ̂2)

σ̂2
. (C8)

and

LR3(γ) =
S3(γ3)− S3(γ̂3)

σ̂2
. (C9)

Last but not least, Hansen’s method applies to panel data. We can therefore

decompose the error term ϵ into a country fixed effect µi, a time fixed effect λt, and

a residual error term εit: ϵit = µi + λt + εit. In this specific application, we amend

Hansen’s approach in one important way. While Hansen (1999) treats individual

fixed effects using a conventional within-transformation, we model the country

fixed effect µi using the pre-sample mean of the dependent variable. However this

estimator is inconsistent for the parameters of interest if the regressors are not

strictly exogenous, which is likely to be the case with our policy variables.30 This

is another reason to implementing the Pre-Sample mean as presented in Section

C.1.

30An alternative is to use the quasi-differenced estimator as proposed by Chamberlain (1992)
and Wooldridge (1997). However, the quasi-differenced estimator lacks consistency series are
highly persistent.
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C.4 Model selection

Our objective is to arbitrate among the various models considered and choose the

one specification which most accurately reflects the underlying data generating

process (DGP ). Because all specifications share some common explanatory vari-

ables, we consider them as overlapping models.31 This rules out the possibility of

using both the log-likelihood ratio test for nested models nor Vuong’s statistics for

strictly non nested models (Vuong 1989). Moreover, the number of explanatory

variables differs from one model to another. This screens out the possibility to rely

on the simple R-squared and log-likelihood statistics (LL) for model comparisons.

Because both vary monotonically with the number of explanatory variables, they

cannot provide information on the policy-induced model of innovation closest to

the underlying, but unknown, DGP .

Our strategy is to provide three series indicators that all suit model selection

with overlapping models. The first indicator is the adjusted R-squared. Its most

appealing feature is that its relationship with the number of explanatory variables

can either increase or decrease, depending on whether the additional regressor(s)

brings valuable information to the model. The adjusted R-squared increases only

when the newly added set of variables brings valuable information to the model. It

otherwise decreases. Hence one should choose the model with the highest adjusted

R-squared. In the same vein, we use Akaike information criterion (AIC) based

indicators. Model selection based on the AIC is attractive because, again, its rela-

tionship with the number of explanatory variables can either increase or decrease,

31This is in fact more subtle. Equations (2) and (3) represent the classical case of nested
models, where Equation (2) is nested into Equation (3), with the parameter for the interaction
term being constrained to nullity (BKg,P = 0). However, the threshold specification, regardless
of the number of thresholds, is not nested into the other two specifications.
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depending on whether the additional regressor(s) brings valuable information to

the model.32 The AIC decreases only when the newly added set of variables brings

valuable information to the model. It otherwise increases. Hence one should choose

the model which minimizes AIC. Additionally, we use a modified version of AIC,

AICc, which corrects for small samples, as is the case here.33

Given the additional complexity implied by the threshold specification, we must

provide some intuition about the potential gain in fitting the data implied by using

a more complex specification. This is why we find it necessary to provide additional

information regarding the significance in the gap in scores across models. As such,

AIC and AICc are hard to interpret, but both can be used to derived more intuitive

measures of strength of evidence in favor of one better model. Following Burnham

& Anderson (2004), the simple transformation exp(−△
2
) , where △ = AICm −

min(AIC) or△c = AICc,m−min(AICc) andm is the given model being evaluated,

can be interpreted as the likelihood of the model, given the data.34 Another

indicator is to use Akaike weights ωm =
exp(−△m

2
)∑

m exp(−△m
2

)
and can be interpreted as

weights of evidence in favor of model m.

Last, we rely on Vuong’s 2LR statistics for overlapping models (Vuong 1989).

Vuong’s 2LR statistics is a two-by-two model comparison by taking the usual

log’s ratio statistics: 2 × (LL(F) − LL(G)), where F and G refer to overlapping

specifications displayed in Equations (2), (3), (4) and (5). Unlike the LR-test for

nested models, Vuong’s 2LR can be either positive or negative. A positive value

indicates that LL(F) exceeds LL(G), so that model F must be preferred over G.

32The Akaike criterion reads AIC = −2LL+ 2K (where K is the number of parameters).
33The corrected version reads AICc = −2LL + 2K + 2K(K+1)

n−K−1 (where n is the number of
observations). AICc shares the same features as AIC.

34It appears immediately that the model yielding the minimum AIC (respectively AICc) will
also be the one with a likelihood amounting to unity, since AICm −min(AIC) = 0.
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Conversely, a negative value indicates that LL(G) exceeds LL(F), so that model

G is to be preferred over F. The difficulty is that the asymptotic properties of

Vuong’s 2LR statistics to define a critical probability are difficult to derive. To

overcome this limit, we proceed by block bootstrapping on countries, estimate

the various candidate models for each bootstrapped sample, compute LL(F) and

LL(G), and derive Vuong’s 2LR statistics. Repeating this experiment for 1,000

bootstrapped samples, we then simply count the number of times Vuong’s 2LR

statistics is positive or negative. The share of positive 2LR (resp. negative 2LR)

can be used as a critical probability for the one-sided test in favor of model F

(resp. model G).

Taking stocks of the above, model selection for overlapping models is based on

three criteria: the adjusted R-squared, AIC-based criteria △ and ω, and Vuong’s

2LR statistics for overlapping models. Bear in mind that, because 2LR(F,H) =

2LR(F,G) + 2LR(G,H)35, 2LR distances are cumulative, so that our conclusion

on the dominance of a model over another one are transitive. Hence, instead of

comparing all possible pairwise comparisons, we perform three comparisons only.

35More precisely, 2LR(F,G)+2LR(G,H) = 2× (LL(F)−LL(G))+2× (LL(G)−LL(H)) =
2× (LL(F)− LL(H)) = 2LR(F,H).
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Appendix D. Ancillary results

D.1 Quality of instruments

Table D1 below report the results of first stage regressions for all policies taken

at once ALL, CC and MB. Because all our policy measures are normalized such

that they belong the the [0− 1] interval, we rely on the use of Tobit regression to

account for left and right censorship in the data. Focusing on coefficient pertain-

ing to our instrument, we observe a positive and significant relationship between

policies implemented in a given country and those implemented in similar coun-

tries with same legal origin. In other words, policies carried out in countries with

the same legal origin and a high index of similarity are good predictors for local

implementation. Observe, however, that this holds within policy types: neigh-

bouring CC policies correlate with local CC ones, and neighboring MB policies

correlate with local MB ones).36 We find no sign of fertilization across policies.

In Column 2 in fact, neighbouring CC policies negatively correlated with the im-

plementation of local MB policies. The interpretation of such negative effect is

far from immediate. A possible interpretation is that countries where MB policies

are high believe that market-based incentives suffice in organizing the transition,

and compete with their neighbour countries on this ground alone. We find no sign

of neighbouring MB policies affecting local CC policies.

36This also holds when we compile all policies within one broad ALL category, as is exposed
in Column 1.



Table D1: First Stage Tobit Regressions

(1) (2) (3)

ALL MB CC

Pre-sample mean 0.061*** 0.086*** 0.057**
(0.018) (0.025) (0.023)

ln rKg/f,t−1 0.013 0.147*** -0.041***
(0.011) (0.019) (0.016)

lnKf,t−1 0.033** 0.158*** -0.022
(0.013) (0.025) (0.018)

lnK−(g+f),t−1 -0.023** -0.129*** 0.024*
(0.010) (0.019) (0.014)

P̄ALL 0.880***
(0.070)

P̄MB 1.441*** 0.063
(0.175) (0.140)

P̄CC -0.230** 0.912***
(0.109) (0.078)

Control variables Yes Yes Yes
Observations 759 759 759
Observations left censored 85 280 132
Observations right censored 0 1 8
F -stat IV 70.51 45.73 65.94

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
All regressions include a full vector of unreported year fixed effects, a
dummy variable for observations with no fossil fuel patent production
(kf,t = 0). The set of control variables is: MB: market based policies; CC:
command-and-control policies; lnEP : Electricity production (in kW, in
logs); lnEC: Electricity consumption per capita (in kW per hour, in logs);
EM : electricity import share in domestic production; EX: electricity ex-
port share in domestic production; HC: Human capital index;lnGDP :
GDP (in thousands of 2011 USD PPP, in logs);lnPOP : Population (in
logs).
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D.2 Number of thresholds

Table D2 presents the estimated thresholds. Hansen’s method detects two thresh-

olds in our sample. The point estimates of the two thresholds are 1.292 and 2.198,

which correspond to, respectively, the 47th and 89th percentiles of the distribu-

tion of the (log-transfomed) rKg/f,t−1 threshold variable. The confidence intervals

around the estimated thresholds are small, indicating little uncertainty about the

location of the level of rKg/f,t−1 needed to switch from one regime to another.

The plots of the concentrated likelihood ratio function, which are shown in Figure

D1, provide further information about the threshold estimates. In particular, the

graph for the one-threshold model indicates a first threshold, which is where the

LR hits zero at the 47th percentile of the threshold variable, and a second major

fall in the LR at the 89th percentile.

Table D2 also presents the F-statistics for the models. The F-statistics in

the column γ̂r
1 tests the null hypothesis H0 of absence of thresholds against the

alternative hypothesis H1 that there is at least one threshold. Similarly, the F-

statistics in the column γ̂r
2 (resp., γ̂

r
3) tests the null hypothesisH0 that there are two

(respectively, three) thresholds against the alternative hypothesis H1 that there is

one (respectively, two) thresholds. The F-statistics for the one threshold and two

thresholds models are highly significant, with bootstrapped p-values of 0.001, and

0.0104, respectively. Conversely, the F-test for the three-threshold model is not

significant, with a bootstrap p-value of 0.126.

The identification of two thresholds is a first indication that the impact of the

CC and MB policy instruments on the direction of innovation switches disconti-

nously depending on a country’s degree of relative specialization in renewable and
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Table D2: Threshold percentile, value, and significance test for the threshold vari-
able lnKg/f

γ̂r
1 γ̂2 γ̂3

Threshold percentile 47 89 32
Threshold value for ln rKg/f,t−1 1.292 2.198 1.033
95 % CI for ln rKg/f,t−1 [0.929, 1.336] [2.161,NA] [.457, 1.154]
90 % CI for ln rKg/f,t−1 [1.219, 1.336] [2.147,NA] [.491, 1.120]
F-statistics 25.29 21.42 10.14
P-value 0.001 0.010 0.126

The obtained thresholds are estimated from model 5 of Table 3 with 1000 bootstrapped
samples.

fossil-based energy technologies. Table D2 establishes the existence of thresholds

in policy effectiveness which depend on the level of the relative specialization in one

of the two technological options, against the alternative that policy effectiveness

is stable irrespective of specialization. This indicates that the linear model under-

performs both the interaction and the threshold models; specifically, the presence

of two thresholds implies the existence of three distinct regimes.

D.3 Robustness check

Table D3 displays the results of our various models with a new definition of renew-

able patents including energy invention in the realms of energy storage and smart

grids (Robustness check 1). It also displays the newly estimated thresholds. By

and large, the results are consistent with those presented in Table 3. We detect

three regimes, with two thresholds located at the 40th and the 89th percentiles

of the relative specialization variable rKg/f . In Robustness check 2, we use the

former definition of renewable patents and increase the quality threshold to family

size 4. Again, the results are strikingly consistent with those presented in Table
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Figure D1: Likelihood Ratio test and confidence interval construction for the
three thresholds tested. Vertical axis: LR-test; horizontal axis: percentiles of
the threshold variable KR/F . The dashed horizontal line represents the 5% critical
value of the test.
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3. We detect three regimes, with two thresholds located at the 68th and the 89th

percentiles of the relative specialization variable rKg/f . The increase of the first

threshold should be no surprise, as increases in the quality threshold of patents

forces countries to sharper specialization into renewable patent production.

In both cases, the results of the two-threshold model strongly support the view

of discontinuous policy effects across the different regimes: both MB and CC

policies bear on the direction of technical change in energy innovation. CC policies

act as the steering wheel in directing energy innovation towards renewables for

countries with a low level of initial competencies in renewable energy innovation.

Once a given threshold of specialization is reached, implementing MB policies

allows countries to pick up speed in their effort to promote renewable energy

innovation.



Table D3: Regressions using alternative definition of patents

Robustness check 1 Robustness check 2

Pre-Sample mean 0.157 0.178 0.166 0.327 0.359* 0.345*
(0.209) (0.203) (0.207) (0.228) (0.209) (0.203)

ln rKg/f,t−1 0.433*** 0.213 0.271** 0.495*** 0.295** 0.365***
(0.124) (0.130) (0.124) (0.145) (0.134) (0.122)

lnKf,t−1 -0.029 -0.021 -0.032 0.108 0.011 0.085
(0.116) (0.109) (0.116) (0.115) (0.087) (0.108)

lnK−(g+f),t−1 0.142 0.142* 0.159* -0.021 0.010 0.010
(0.093) (0.086) (0.090) (0.089) (0.092) (0.088)

MB policies 0.318 -1.372** 0.076 -1.905***
(0.417) (0.664) (0.392) (0.719)

MB × ln rKg/f,t−1 0.753* 1.256***
(0.453) (0.466)

CC policies 1.181** 0.700 1.523** 1.562**
(0.527) (0.644) (0.601) (0.736)

CC × ln rKg/f,t−1 0.415 -0.134
(0.367) (0.331)

MB × 1(ln rKg/f,t−1 ≤ γ̂r
1) -0.581 -0.504

(0.581) (0.583)

MB × 1(γ̂r
1 < ln rKg/f,t−1 ≤ γ̂2) -0.057 0.267

(0.441) (0.514)

MB × 1(ln rKg/f,t−1 > γ̂2) 1.143 2.472**
(1.072) (1.106)

CC × 1(ln rKg/f,t−1 ≤ γ̂r
1) 0.839* 1.472**

(0.504) (0.674)

CC × 1(γ̂r
1 < ln rKg/f,t−1 ≤ γ̂2) 1.353** 1.523**

(0.571) (0.635)

CC × 1(ln rKg/f,t−1 > γ̂2) 1.071 0.063
(0.984) (1.032)

Control variables Yes Yes Yes Yes Yes Yes
Observations 759 759 759 759 759 759
R-squared 0.647 0.666 0.669 0.637 0.652 0.657
LL -614.9 -594.5 -590.3 -650.5 -633.7 -628.9
RSS 224.6 212.9 210.5 246.7 236.0 233.1
Vuong’s 2LR 40.86 8.312 33.69 9.555

First Threshold 40 68
P-value First threshold 0.002 0.000
Second Threshold 89 89
P-value Second threshold 0.023 0.050

In robustness check 1, we count energy invention in the realms of energy storage and smart grids as renewable
patents, and keep family size 2 as the quality threshold. In robustness check 2, we use the former definition
of renewable patents and increase the quality threshold to family size 4. Bootstrapped standard errors in
parentheses produced from 1,000 block-bootstrapped samples. *** p<0.01, ** p<0.05, * p<0.1. Vuong’s
ratio 2LR statistics for partially overlapping models compares the current specification with the specification
of the previous column. All regressions include a full vector of unreported year fixed effects, a dummy variable
for observations with no fossil fuel patent production (kf,t = 0), and a set of control variables (See Table
3 for a list of control variables. Regressions also include unreported control function errors from a first IV
stage on policy variable MB and CC.
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Appendix E. Simulations

The model simulates patent production in both renewable and fossil fuels respec-

tively. We choose to simulate patent production, more than the ratio of the two

realms of energy innovation, in that actors produce patents irrespective of the

ratio. Thus we simulate how actors react to policies in their production of innova-

tion. The direction of innovation is then seen a second order product of innovation

itself, although the policy objective is to orientate innovation in a given direction.

Therefore, the simulation is based on the following two equations:


ln k̃g = B̂g,PP+ β̂g,Kf

K̃f,t−1 + β̂g,rK ln ˜rKg/f,t−1 + B̂g,CC̄

ln k̃f = B̂f ,PP+ β̂f,Kf
K̃f,t−1 + β̂f,rK ln ˜rKg/f,t−1 + B̂f ,CC̄

(E1)

where B̂ denotes the vector of estimated coefficients in the renewable (g) or in the

fossil fuel (f) equations, respectively. Variables k̃ and K̃ represent recursively sim-

ulated realizations of knowledge flow k and knowledge stocks K. Subscript (t− 1)

implies that all knowledge stock variables are lagged one year. Expression B̂PP is

the condensed form of the two-threshold specification, similar to equation 5. Hence

their values are those displayed in Columns (5) and (6) of Table 5. Vector C̄ rep-

resents all control variables set to their country-specific averages. This implies

that the simulated dynamics can only be attributed to variations in policy choices

P. Consistently with econometrics results, we define three policy regime R1, R2

and R3. The first regime is characterized as CC policies supporting innovation

in renewables, whereas MB policies support innovation in carbon-efficient techno-

logicies (P⋆
R1 = {CC}). The second regime implies the reliance on both types of
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policies (P⋆
R2 = {CC;MB}). The third regime is based on the implementation of

MB policies exclusively ( P⋆
R3 = {MB}).

We define policy vector P as being composed of policy stringency in both

CC and MB policies such that P = {SCC ;SMB}. Policy vector P is determined

in three different ways, leading to three different set of results. First, we define

Pobs as the observed policy stringency in a given country, as provided in the

data: Pobs = {Sobs
CC , S

obs
MB} . Second, we define P⋆

obs as the appropriate policy

vector activated under the adequate policy regime, with policy intensity set at

the observed country’s maximum values. Hence P⋆
obs,R1 = {Smaxi

CC ; 0} in regime

1, P⋆
obs,R2 = {Smaxi

CC ;Smaxi
MB } in regime 2, and P⋆

obs,R3 = {0;Smaxi
MB } in regime 3.

Third, we define P⋆ as the appropriate policy vector with stringency set to unity,

implying that countries design their policy at full steam. This implies that CC

policies are active and set at their maximum during the first and second regime

only, and that M policies become active only when the third regime has been

reached. Conversely, the inappropriate policy is set to zero. Hence P⋆
R1 = {1; 0}

in regime 1, P⋆
R2 = {1; 1} in regime 2, and P⋆

R3 = {0; 1} in regime 3.

The simulations run in a recursive manner as follows: (i) In period 0, we set

K̃g,t0 = Kg,1990, K̃f,t0 = Kf,1990; (ii) Given K̃g,t0 and K̃f,t0 , we compute ratio

rK̃g/f,t0 and ln rK̃g/f,t0 ; (iii) variable ln rK̃g,t0 is compared to γ̂r
1 and γ̂2 in or-

der to determine the policy regimes P⋆
obs and P⋆; (iv) simulation Model (E1)

uses Pobs, P⋆
obs and P⋆ to produce expected innovation in the following pe-

riod (t1) in renewable energy (k̃g = {k̃Pobs
g,t1 ; k̃

P⋆
obs

g,t1 ; k̃P⋆

g,t1
}) and in fossil fuel en-

ergy (k̃f = {k̃Pobs
f,t1

; k̃
P⋆

obs
f,t1

; k̃P⋆

f,t1
}); (v) The vector of patent flow k̃g and k̃f is then

added to the vector of accumulated patent stocks K̃g and K̃f ; (vi) new ratios

rK̃g/f = {rK̃Pobs

g/f,t1
; rK̃

P⋆
obs

g/f,t1
; rK̃P⋆

g/f,t1
} and their corresponding log-transformed val-
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ues are computed as in (ii). The simulation then loops over (iii)-(vi) until t22 is

reached, which is the simulated equivalent for year 2012.

Under the three policy scenarios, we produce three series rK̃g/f . The first

captures the direction of innovation implied by the actual policy mix (Pobs). The

second captures how the direction of innovation would have been affected, had the

country abided by the right timing and at its actual policy stringency (P⋆
obs). The

third captures how the direction of innovation would have been affected, had the

country abided by the right timing (given its level of relative specialization) as

well as implemented the highest policy stringency (P⋆).

Figure E1 provides the simulated dynamics of the renewable to fossil-fuel patent

stock ln rK using Equation E1 for all countries. The displayed dynamics is for the

specialization variable ln rK̃g/f displayed, using alternatively Pobs (black line),

P⋆
obs (grey line), and P⋆ (red line). The dashed horizontal grey lines denote the

first (γ̂1) and second (γ̂2) thresholds.
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Figure E1: Simulating the country dynamics of the renewable to fossil-fuel patent
stock under alternative policy scenarios
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Specialization variable ln rK̃g/f displayed, using alternatively Pobs (black line), P⋆
obs (grey
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thresholds.
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