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An effective and easy-to-implement frequency filter is proposed, obtained by convolving a
raised-cosine window with the ideal rectangular filter response function. Three other filters,
Hodrick-Prescott, Baxter-King, and Christiano-Fitzgerald, are critically reviewed. The behav-
ior of the windowed filter is compared to the others through their frequency responses and by
applying them to both an artificial, known-structure series and the Euro zone GDP quarterly
series. A bandpass version of the Hodrick-Prescott filter is used. The windowed filter has
almost no leakage and is better than the others at eliminating high-frequency components. Its
response in the passband is significantly flatter, and its behavior at low frequencies ensures
a better removal of undesired long-term components. These improvements are particularly
evident when working with short-length time series, which are common in Macroeconomics.
The proposed filter is stationary and symmetric, therefore it introduces no phase-shift. It uses
all the information contained in the raw data and stationarizes series integrated up to order
two. It thus proves to be a good candidate for extracting frequency-defined series components.
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1 Introduction

There are several ways for formalizing the separation of a signal into different periodic compo-
nents. One of the most insightful remains the Fourier decomposition, which views the signal as
a linear combination of purely harmonic components, each having a time-invariant amplitude
and a well-defined frequency. Short-time Fourier analysis and wavelets — which make it possi-
ble to represent the frequency content of a series, while keeping the time and scale description
parameter respectively — are also an alternative, especially in the case of nonstationary or in-
termittent signals. These techniques allow a detailed insight into the data structure. However,
they are not easily implemented with short-length series and are not broached in this paper.

A selective filtering operation over an infinite continuous signal is defined by specifying the
range of individual frequencies that should be extracted and those that should be removed. In
the case of finite-length samples, it is impossible to design a filter that preserves all frequencies
in a given range and completely removes those outside it (the so called ideal filter). Indeed,
especially in the case of short-length series, abrupt variations in the frequency response give
rise to the Gibbs phenomenon, the appearance of spurious artificial fluctuations in the filtered
signal (see, among others, Hamming (1998), Oppenheim and Schafer (1999), and Priestley
(1981)). Therefore, it is important to design good approximations to the ideal filter — “good”
relative to some optimization criteria, like the (weighted) difference between the desired and
the effective response.

We propose here the Hamming/Hanning-windowed (HW) filter, which provides a simple
and efficient solution to an ideal filter approximation. It is obtained by windowing, which
is a well-known technique in engineering (Oppenheim and Schafer (1999)). It consists in
smearing the ideal filter response with a lag window and it leads to good attenuation of the
spectral power outside the passband, allowing almost complete removal of undesired frequency
components. Its only drawback is a negligible widening of the transition between the selected
band (passband) and the remaining spectral components (stopband), which implies that a
negligible part of the frequency components lying near the edge of the chosen band may be
present in the filtered series.

To show the qualities and improvements of the HW filter, we compare it to those most
widely used in Macroeconomics for trend and cycle extraction, namely the filters in Hodrick
and Prescott (1997), Baxter and King (1999), and Christiano and Fitzgerald (2003). We
thoroughly review these filters and, in particular, we visualize the time coefficients, gain, and
phase of the Christiano-Fitzgerald filter, plotting them as surfaces in three-dimensional space.

In the following section, we briefly recall the issues of optimal filter design. In the third
section the HW filter is introduced, together with a sketch of its computing algorithm. The
fourth section contains an extensive critical overview of the the Hodrick-Prescott (HP), the
Baxter-King (BK), and the Christiano-Fitzgerald (CF) filters. In the fifth section these are
compared to the windowed filter, both from a theoretical point of view, by plotting their
frequency responses, and from an applied one, by applying them to an artificial series and the
Euro zone GDP quarterly series. The sixth section concludes.



Spectral Analysis for Economic Time Series

2 The Optimal Filtering Problem

It is common knowledge that an infinite series would be required to obtain the ideal (rectangu-
lar) frequency selective filter H'4*(v) = O(v — 1)[1 — O(v — v,)], where O(z) is the Heaviside
step function. The aim of optimal filtering theory consists in finding the best approximation
to H'9eal(y) in the case of finite series.

We deem the essential requirements to be met in solving the optimal filtering problem to
be: (i) the approximated filter should leave as much information unaffected as possible over the
specified range of periodicities it is supposed to extract; (ii) it should not introduce spurious
phase shifts, which would imply a modification of timing relations among different series or
among different frequency components within a same series; (iii) its output must be stationary.

Consider the filtering problem for a finite time series u; of duration 7" = NAt, where N is
the number of data points and At the sampling periodicity:

N-1

vio= B ®up = Y hatjn .y
n=0

1 =172 -

— N Z HkUkeﬂﬂjk/N ) (1)
k=—N/2
Since we are dealing with a finite discrete series, the frequency v, = k/(INAt) and the time ¢; =
jAt variables are also discrete and indexed by k£ and j, respectively. Moreover, because of
discretization, the absolute value of vy is bounded by vnyq = (2At)7!, the so-called Nyquist
frequency. Tt is easy to see from (1) that the filter Hj is not causal, since each point of the
output series is computed by means of past as well as future values of the input series.
From the expression of the filter frequency response

-2
Hk: — At Z hnefZZﬂnk/N : (2)

n=—|Ny/2]

we deduce that a filter that is real in the time domain (h; = h}) is symmetric in the frequency
domain (Hy = H_j), and vice versa. Therefore, if we want real signals to remain real after
filtering, both time and frequency response functions have to be real and symmetric, to avoid
time and /or frequency shifts. Indeed, it is easy to see that, if the filter Hj, is a complex function,
different frequencies undergo different phase shifts and the timing relations among components
are destroyed.

Equation (2) implies that the sum of the windowed filter coefficients h; is set by the fre-

quency response at the origin
[(N-1)/2]
Hy=At Y hy,. (3)

n=—|N/2|

This allows the removal of the signal mean in the case of lowpass and bandpass filters,
Hilyg = 0. (4)
If we add the following condition on the filter first time derivative:

AHk|kz:0 =0, (5)
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or its time domain equivalent
[(N-1)/2]
nh, = 0, (6)
n=—|N/2|
then the elimination of two unit roots is ensured.

The circular convolution (® ) in (1) implies that the finite signal is replaced by its periodic
Version Un4; = Uj mod N, the maximum period length being implicitly assumed by the Fourier
transform to be T = NAt. This imposed T-periodicity is in general false and affects the
analysis. Indeed, it introduces an artificial discontinuity at the edges of the time series in the
form of the Gibbs effect. As is shown in the next section, these oscillations are due to the form
of the discrete Fourier transform of a rectangular window of width 7" = NAt (see Figure 1).

There are three ways to minimize this effect. The first is to choose the length of the
series T' as a multiple of the highest period that is likely to occur. This is a very difficult task,
since it requires knowledge of the data-generating process and would, in any case, imply some
data loss. The second is to choose both cutoff frequencies as integer multiples of 7!, which
is easier to do, but might also imply data loss. The third, if the series has a deterministic
trend, for instance a polynomial function of time, is to subtract the least-squares fit before
filtering. Recall that the operation of detrending and that of filtering do not commute, since
a polynomial and a periodic term are not orthogonal. Subtracting the OLS regression line
can always be done to reduce the edge discontinuities that appear if there are non-harmonic
frequencies in the signal. The effect of this discontinuity is, however, reduced to negligible
amplitudes by the use of windowing.

3 The Windowed Filter

The truncation to N of the ideal filter time coefficients

sin(27vy,j At) — sin(2wy,j At)

hijdeal = , Jj=—00,...,00,
)
hideal — i hideal _ A .
0 = Ay = 2At(v, — ) , (7)
]—)
where 7 = —o00,...,00, and v, and v, represent the high and low cutoff frequency, respectively,

amounts to multiplying (7) by an N-wide rectangular lag window, yielding

an 5 (5 + )] —sn [ (- 1)

h, = , i=1,...,N—1,
’ Nsin(%) J
. 2

The truncation induces fluctuations of large amplitude and slow decay in the response
function — the Gibbs effect again —, caused by the discontinuities induced by the lag win-
dow, whose sin(nvT') /(mvT')-profile Fourier transform (Figure 1, right panel) disturbs the ideal
frequency response. An adjustment to the rectangular lag window shape is thus required to
obtain a response that goes faster to zero. For this purpose, the “adjusting” window should
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Figure 1: Window Functions and Their Frequency Responses.

be chosen to go to zero continuously with its highest possible order derivatives, at both ends
of the observation interval.

The choice of the best window has been thoroughly discussed in the signal processing
literature (Jenkins and Watts (2000); Priestley (1981); Oppenheim and Schafer (1999)) and is
not a univocally defined problem because different optimization criteria could be used, among
which: (i) the minimization of the leakage factor, that is, the ratio of the power in the sidelobes
to the total window power (see Fig. 1); (ii) the minimization of the mainlobe width (the highest
peak in Figure 1, right panel), which is proportional to the transition band width — the width
of the band that arises between the stopband and the passband, as a consequence of the
finiteness of real series — ; (iii) the minimization of the highest or the first sidelobe peak
height. Notice that there is a trade-off between (i) and (ii): the lower the leakage factor,
the wider the mainlobe width, and wvice versa. This is shown in Figure 1: the rectangular
window indeed has the narrower mainlobe width, which implies a steeper transition between
the passband and the stopbands, but at the price of a high leakage factor.

From these and other possible criteria, a broad range of windows arise (triangular, Bartlett,
Parzen, Blackman, Tuckey-Hanning, Hamming, see Priestley (1981)). We single out the raised-
cosine (or general Tuckey) windows

<a<l1, (9)

N | —

9
wi™ = a— (1—a) cos (%) :
which have spectral windows of the form

(10)

W) = l(%_lH 2(1-@1 sin(mvT)

1— (vT)? T

More precisely, we consider the so-called Hanning (@ = 0.5) and Hamming (a = 0.54) windows
(the H-window in the following, Figure 1), which represent the best compromise for our pur-
poses in building a bandpass filter. Obviously, different windows may perform better as regards
one specific criterion. For instance, the Blackman and Parzen windows have a lower leakage
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factor and a better sidelobe attenuation than the H-windows, but a wider transition band,
that affects the performance of the bandpass filter, especially in the case of short-length series.
Not restraining ourselves to “static” windows, we could also consider other windows, like the
Gaussian or the Kaiser windows, which have a parameter that allow to establish quantitatively
and to modify the ratio between leakage factor and transition (mainlobe) width. Nevertheless,
the use of such windows leads to much more complicated computations and a marginal gain
with respect to H-windows.

Figure 1 shows the rectangular, Hanning and Hamming windows (left panel) and their
corresponding Fourier transforms (right panel). The Hanning window is continuous and van-
ishes at both zero and N along with its first derivative (see Figure 1, left panel), while the
Hamming window is not continuous at the edges of the interval and is obtained by a judicious
combination of the Hanning and the rectangular windows. As for their frequency responses,
the H-windows have a mainlobe width that is almost twice as wide as that of the rectangu-
lar window. This implies that the filters obtained by H-windowing have a transition band
approximately twice as wide as that of the ideal filter — the price paid for smoothing. The
Hanning spectral window performs better than the Hamming one in the upper part of the
spectrum (high v), and this is useful with long time series with good frequency resolution, like
those typical in finance. However, the Hamming spectral window attenuates the first sidelobes
amplitude better, and hence, it is the appropriate window to use when frequencies close to
the edges of the passband have to be eliminated — especially in the case of short-length series
more common in macroeconomics.

Both the Hanning and Hamming spectral windows are real and even, so that the symmetries
of the ideal infinite filter are preserved; that is, if the latter is real and even, it remains so
through windowing.

3.1 The HW Filter Algorithm
We now introduce the proposed filtering procedure, described by the following algorithm:

(i) subtract, if needed, the least-square regression line to remove the artificial discontinuities
introduced at the edges of the series by the Fourier transform;

ii) compute the discrete Fourier transform of the signal u;
) j
N-1 o
=) uje’m”k/N, kE=0,...,|N/2]|;
j=0

(iii) apply the Hanning- or Hamming-windowed filter (W} % Hy) to Uy,

Vi = (Wis Hy) Uy = S0y o) Wie Heio Uy

= (2 Ho+aH+ 52 Hn| U, k=0, [N/2],
where Hj, is defined by the frequency range as

ideal =
Hy = Hy { 0 otherwise
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Figure 2: Windowed Filter Frequency Response.

and W}, is the discrete window Fourier transform, which has only three non-zero compo-
nents at frequencies 0 and +(NA¢)™!

(iv) compute the inverse transform

LN/2)
Vo + Z (Vie WM Vs emabNY | =0, N = 1.

Windowing the filter response in the frequency domain by convolution of the ideal response with
the spectral window, as in (iii), is computationally less expensive than time domain multipli-
cation. Indeed, as stressed above, both the Hamming and Hanning discrete spectral windows
have only three non-zero components. Also note that the HW filters satisfy conditions (4)
and (5), and thus stationarize an I(2) series.

From now on we deal only with the Hamming-windowed filter, since it is more suitable for
short macroeconomic series. But the differences between the two filters in comparison with
the others are almost imperceptible. Figure 2 shows the frequency response of bandpass filters
obtained by direct truncation and by the Hamming-windowing procedure. Note the reduced
leakage of the filter obtained by windowing. As for the wider transition band, however, in
many applications it is more important to remove most of the undesired frequencies than it is
to have a sharp discrimination between frequencies at the edges of the passband. Summing up,
this filtering procedure ensures the best possible behavior in the upper part of the spectrum,
the complete removal of the signal mean, and a flat response inside the passband.

4 Overview of the Most Popular Bandpass Filters

In this section, we provide a critical review of some of the frequency-selective filters that are
widely used in the literature for trend and cycle extraction, namely the HP filter (Hodrick
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and Prescott (1997)), the BK filter (Baxter and King (1999)) and CF filter (Christiano and
Fitzgerald (2003)). The by-products of this review are essentially four: the finding of an
explicit formula for the computation of the HP filter A-parameter as a function of the sampling
periodicity and of the cutoff frequency; the consequent building of a bandpass version of the
HP filter, in order to make a fairer comparison among all the filters (see Section 5); the formal
expression of the minimum moving-average order of the BK filter (the parameter K), to obtain
the appropriate resolution according to the cutoff frequencies values; and the three-dimensional
plots of the CF filter time coefficients, gain and phase.

4.1 The Hodrick-Prescott Filter

The Hodrick-Prescott cyclical component UJHP is defined as the difference between the original
signal u; and a smooth growth component g;. The latter is the solution of the optimization
problem

N-1
min > |(u; — ;)* + Mgj1 — 29, + 9;1)°] (11)
{95} §j=0

which minimizes the sum of the norm of the cyclical component [[vi'|| = [lu; — g;|| and the

weighted norm of the rate of the growth component |[(1 — L)(1 — L™')g,||, where L is the lag
operator Lx; = x;_;. The smoothing parameter A\ penalizes variations in the growth rate with
respect to the differences between filtered and unfiltered series and is usually set to 1600 for
quarterly data. For large values of A, the growth component g; tends to the OLS line calculated
from the data.

The solution of (11) for N — oo can be found explicitly in the frequency domain (King
and Rebelo (1993)) and leads to the following expression for the frequency response function

4 M1 — cos(2mrAt))?
1+ 4A(1 — cos(2mvAt))?
16 \ sin*(7vAt)

— 12
1+ 16 A sin*(rvAt) (12)

HYP (1) =

where G(v) is the Fourier transform of the series growth component g;.

From this expression and Figure 3, it can be seen that this is in fact a highpass filter,
the frequency response rising monotonically from zero at v = 0 to nearly one at the Nyquist
frequency. The transition is rather smooth and occurs at a cutoff frequency — defined as the
frequency for which the response is equal to 0.5 — given by

)\—1/4
ve = (mAt)™! arcsin( 5 ) ; (13)

that is, v, = 0.0252 (At)~! when A\ = 1600. Hence the HP filter, in the configuration suggested
by the authors for quarterly data, selects periodicities shorter than approximately 10 years,
but has the disadvantage of a wide transition band (see Figure 3). The frequency response
goes as A\(2rvAt)? at low frequencies; hence it behaves as a fourth-difference filter and can
stationarize an I(4) process.
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Figure 3: Hodrick-Prescott Filter Frequency Response.

A recurring issue when using the HP filter is the value of the parameter A to use when
dealing with annual or monthly data. This has been studied in, among others, Ravn and Uhlig
(2002), which finds

Ao = ', (14)

where )\, is the value of the parameter for quarterly data (the usual 1600), s is the alternative
sampling frequency (equal to 1/4 for annual data and 3 for monthly data), and As the cor-
responding parameter value. As for the dependence of A on the cutoff frequency, by noticing
that the HP filter belongs to the wider class of Butterworth filters, Gomez (2001) indicates the
expression

A = [2sin(z./2)] 7", (15)
where z. stands for the reduced angular frequency. A more general and comprehensive work is
Harvey and Trimbur (2003b). This analyzes the dependence of A on the cutoff frequency and
the sampling frequency in a model-based approach to filters. In particular, it examines how
the variation of A can change the structure of an unobserved component model by modifying,
for example, the correlation between components.

To find the explicit dependence of A on both the sampling frequency and the cutoff fre-
quency v,., we can directly solve the frequency response (12) for A\. Through (13), we obtain

A = [2 sin(rr.A)] . (16)

Consequently, for a value of v, such that A = 1600 for At = 4! years, we find that A\ = 6.68
when At = 1years (see Figure 3) and A = 129660 when At = 127! years. Equations (15)
and (16) are exactly the same, considering that x. = 27 At. It is easy to see that, in the

9
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limit of small values for the reduced frequency v.At (large values of A), the formula (14) is
equivalent to (16) and of course (15), and both are equivalent to

A\~ (27TVCAt +0 ((VCAt)3))_4 . (17)

Therefore A varies as the inverse fourth power of v, or At, as can be guessed by inspection
of (11), where A\ multiplies the square of the second difference of g;.

By means of the formula (16) or (17), which allows the tuning of the cutoff frequency,
a Hodrick-Prescott bandpass filter can be obtained as the difference between two highpass
filters with different appropriate A values, as shown in Gomez (2001) and Harvey and Trimbur
(2003a) for Butterworth filters. Figure 4 shows the [2,8] years bandpass HP filter obtained
by (12) for a sample of N = 128 quarterly data points. Since the length of this filter, that
is, the number of points involved in the calculation of one point of the filtered series, is equal
to the total number of data points, the behavior of the filter improves as the number of data
available grows. However, as expected, the bandpass HP filter cumulates the compression of
two standard HP filters and is thus quite a poor approximation to the ideal bandpass filter.
Furthermore, since it is a recursive filter — the initial condition ¢g_; is indeed required for
the resolution of the optimization problem (11) —, its finite version is nonsymmetric and
introduces a phase shift near the series edges.

4.2 The Baxter-King Filter

The method proposed in Baxter and King (1999) relies on the use of a symmetric finite odd-
order M = 2K + 1 moving average so that

K
vio= 2 hntjn
n=—K

K
= ho Uy + Z hn (Uj,n + ujJrn) . (18)

n=1

The set of M coefficients {h7"} is obtained by truncating the ideal filter coefficients at M
under the constraint (3) of the correct amplitude at v = 0, that is, H(0) = 0 for bandpass and
highpass filters and H(0) = 1 for lowpass filters. The BK filter coefficients thus have to solve
the following optimization problem:

2

(2At)~1! K ' A
min / dv Z (hEK _ hfeal) 6—127T7’LVAt :
ek, /-2A07 M
K
H(0)
. pBK — 2 19
i n:zEK " At ( )

The solution of the constrained problem simply shifts all ideal coefficients by the same constant

quantity

H(0) — At 355 g By
M At

h?K — hijdeal_}_ (20)
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Figure 4: Comparison of Different Filters.

The frequency response of the BK filter with K = 16 selecting the band [2, 8] years is reported
in Figure 4, together with the responses of the other filters examined in this paper. The
length of the BK filter is M = 2K + 1, so it does not depend on N. This implies that, unless
we vary M, no “automatic” improvement of the filter performance is expected as more data
become available.

Beside being optimal for the constrained problem (19), the BK filter has many desirable
properties. First, since it is real and symmetric, it does not introduce phase shifts and leaves
the extracted components unaffected except for their amplitude. Second, being of constant
finite length and time-invariant, the filter is stationary. Third, the filter is symmetric and
satisfies (3), thus correctly eliminating the signal mean. Moreover, the bandpass and highpass
filter response behave at least as v? for low v, which allows the removal of up to two unit
roots (see (4) and (5)). Fourth, the filter is insensitive to deterministic linear trends, provided
that M < N, so that it is not used near the edges of the series.

On the other hand, filtering in time domain using moving averages, involves the loss of
2K data values, but, if K is chosen too small, the filter resolution [(2K + 1)At]~! would
worsen. In Baxter and King (1999), a value of K = 12 for the passband [1.5, 8] years is found
to be basically equivalent to higher values, such as 16 or 20, even if it is not the case, as is
shown hereafter. As a consequence, the authors suggest putting K > 12 irrespective of N, the
sampling frequency At or the band to be extracted. This may cause significant compression
and high leakage in the obtained filter response. Such drawbacks are, of course, consequences of
the truncation, but they are undoubtedly amplified by the constraint imposition in (19), which,
by adding a constant to the ideal filter coefficients (see (20)), causes an extra discontinuity at
the endpoints of the filter, worsening the leakage at high frequencies.

In our opinion, the correct procedure is to take into account the filter resolution, once
we have fixed the cutoff frequencies. In fact, M must be such that v, — v, > (MAt)™!,

11
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otherwise the filter is unable to select the band with enough accuracy. In particular, filters
with v, > (MAt)~! — filters whose length M is smaller than the longest period they try to
extract — will perform very poorly at low frequencies. This implies that an accurate selection
of periods equal to or smaller than 8 years from quarterly data requires using at least a 32-point
filter (K = 16). Thus, the low limit value of K > 12 suggested in Baxter and King (1999) in
the case of a passband of [1.5, 8] years is definitely too low.

Furthermore, Baxter and King argue that a good filter must not depend on the amount of
data available, because this would imply a new computation of all the filter coefficients each
time new data become available. Thus, time-domain filtering should be preferred to frequency-
domain filtering. In our opinion, it is not wise to neglect the new information that becomes
available when N increases; as more information is added, it is crucial to take it into account
to improve the quality of the filtered signal. This is particularly true with short-length time
series.

Finally, it is worth noting that the same “right” behavior (Equation (3)) at the origin is
ensured with the truncated filter (8) with no additional constraint beyond the requirement of
harmonic cutoff frequencies, that is, cutoff frequencies vy ;) that are both chosen to be integer
multiples of T~!. Actually, it is easy to check from inspection of the frequency response that,
apart from the constraint on the values of vy 5y, this much simpler filter performs better in the
higher part of the spectrum than the Baxter-King filter.

4.3 The Christiano-Fitzgerald Filter

Christiano and Fitzgerald (2003) build a filter using two new ingredients: (i) accounting for the
assumed spectral density of the original data, and (ii) dropping the stationarity and symmetry
conditions on the filter coefficients.

If the exact spectral density of the original data U (1) is known beforehand, the set of
coefficients {h;} is given by the solution of the optimization problem:

(2at)~1t
min / dv
{h;j} J—(2at)-1

2
Z (h] o hijdeal) 67i27rj1/At ’Uexact(y)‘Q ’ (21)
U}

which is equivalent to the minimization of

2At) 1
o= = [ () - ) U ) (22
—(2at)-1
that is, of the discrepancy between the ideally filtered data and the effectively filtered ones.
According to different types of optimization problems, which give rise to different filters,
the set of indexes {j} could be constant symmetric j = —K, ..., K, constant asymmetric j =
—K,...,K', or even general time-varying like j = —(N — j),...,7 — 1. To obtain explicit
solutions, Christiano and Fitzgerald assume different spectral density shapes. For instance,
if |[U®*(y)|? is chosen as independent of frequency (white noise, referred to as IID case in
Christiano and Fitzgerald (2003)), the solution is simply given by truncating the ideal filter
coefficients (7). If u; has one unit root and |[U™**(v)|? goes as v~ for low frequencies but tends
to a constant at high frequencies (the near-IID case in Christiano and Fitzgerald (2003)), it is
shown that the optimal coefficients are again obtained by truncating the ideal ones, but then

12
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hor (i)

Figure 5: CF Random Walk Filter (I): Coefficients.

subtracting from each coefficient the same constant to make their sum equal to zero and cancel
the unit root. For a constant symmetric set of indexes, this gives the Baxter-King filter.

In the end, what is called the Christiano-Fitzgerald filter is obtained by taking the power
spectral density |U®™*t(v)|? oc v=2 for all frequencies, which is the case for a random walk
process. The coefficients can be obtained explicitly and are given by truncating the ideal filter
ones and then adjusting only h_j and hgs. In this way the sum of the left coefficients (j =
—K,...,0) and the sum of the right coefficients (j = 0, ..., K’) are both zero and Equation (3)
is satisfied. The filtering operation is

—- N -

o ] h b ha .. hyes hyea hao w
Vg . h — hg hg hy oo hy_y hy_s }} - h{O,N—3} Usg
h — h{0,1} hy ho oo hy—s hyn_y h— h{O,N—4}
= : : Lo : : : , (23)
h—hox-ay by hys .. hy  h h—hgy
UN-1 h—hoysy hyos hya .. hi hg h — ho UN-1
Loov b | hyer by hwes oo he My h | Loun

where the h;’s are the ideal filter coefficients (8), h = ho/2, and we define ho ;3 = hot+hi+...+
h; to simplify the notation. Remark that, the series u; in (23) has been previously detrended
by linear regression. It is evident — as the authors themselves stress — that this filter acts
differently on each date, so that we actually have N different filters, represented by the raws
of the matrix in (23). The CF filter is time-varying and is thus nonstationary. Moreover, as is
shown in Figure 5, at each time, the coefficients are asymmetric with respect to past and future
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Figure 6: CF Random Walk Filter (II): Gain.

data, considering, of course, periodic boundary conditions un; = Ujmod n. The asymmetry
causes the CF filter response to be complex, and have a nonzero phase. Nonstationarity causes
the phase, as well as the real part of the frequency response, to depend on both frequency and
time.

The gain G(v,t) = \/(%Hcp(y, t))? 4+ (SHer(v, t))? of the CF filter frequency response and
its standardized phase

~ Pop(v,t 1
dop(v,t) = C;EV ) _ 5 arctan(

SHer(v, t)) | (24)

%HCF(V, t)

which measures the number of lags in units of At, are reported in Figures 6 and 7, respectively.
The figures have been obtained for 128 points of quarterly data and a passband of [2, 8] years.
By looking at the gain (Figure 6), we notice some leakage in the upper part of the spectrum
that is particularly pronounced for at least the first and last three years of data, which should
therefore be discarded.

As for the phase, Figure 7 shows the spurious shifts induced in the signal by the CF filter.
The absolute value of the phase reaches a maximum of approximatively 1.6 quarters for cer-
tain components inside the passband. Some components can thus experience shifts up to 45
months,; causing a maximum relative shift of almost one year. With the introduction of a spu-
rious time- and frequency-dependent phase, timing and correlation properties among different
frequency components within the series are irreversibly modified and cannot be recovered. The
same happens to the correlation and causality relations among different series.

To make direct comparisons with the “two-dimensional” filters, we also plot the frequency
response of the symmetric fized-length version of the Christiano-Fitzgerald random-walk filter
in Figure 4. Note that also the frequency response plots in Christiano and Fitzgerald (2003) are
obtained for this version of the filter. Because of the divergence of the random-walk spectral
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Figure 7: CF Random Walk Filter (IV): Phase.

density at low frequencies, the optimization puts strong emphasis on the behavior near the
origin and attenuates these components well (see Figures 4 and 6). This comes at the price
of a mediocre removal of high-frequency components. As in the case of BK filter, the poor
performance at high frequencies stems from the increased discontinuity at the edges of the
filter, once the spurious nonzero amplitude in the origin H(0) has been transferred there. Of
course, if the input signal has very small components at high frequencies, as is indeed the case
of a real random walk, their leaking in the passband is irrelevant. On the other hand, if it is
not clear whether the data can really be modeled as a random walk, as in the case of a growth
rate, this filter is a rather poor approximation to the ideal one.

In our opinion, the advantages of the CF random-walk filter are minimal compared to
its shortcomings. First of all, the introduction of the assumed spectral density in (21) to
find the optimal filter adds a step in the computation of the filtered series (and not an easy
one), specifically, the estimation of the data-generating model. This is a radical change from
the “philosophy” of the other three filters: from a purely descriptive tool to a model-based
methodology. But this is its least problem: there is a whole stream of research on model-based
filtering (Gomez (2001); Harvey and Trimbur (2003a)). In fact, the filter finally proposed by
Christiano and Fitzgerald is not optimal, but nearly optimal: the one they obtain by keeping
the hypothesis of a random-walk for any time series. This procedure is dubious for at least
two reasons: (i) the plausibility of the hypothesis, since, as they write themselves, “This
approach uses the approximation that is optimal under the (in many cases false) assumption
that the data are generated by a pure random walk” (in Christiano and Fitzgerald (2003),
p.436, emphasis added); and (ii) if all the beauty and improvement of the method were in
the search for the optimal filter for a given series, why spoil it by choosing the same spectral
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density, irrespective of the series? What is the point of using such a complex method to obtain
a filter that might work ex post, but for obscure (at least to us) reasons?

In a few words, besides the standard leakage and compression problems, this filter has two
serious shortcomings: it is time-varying and asymmetric. This has at least two consequences.
The first is that nothing can be said about the stationarity of the output signal, even if
the input is itself stationary. The second is that the time- and frequency-dependent phase
shift implies the loss of all timing relations between two series, a loss that can be crucial,
as in, for example, the case of the Phillips curve. A fair amount of work has been done
on the issue of its “reappearance” in business cycle components (Haldane and Quah (1999);
Gaffard and Tacobucci (2001) and Stock and Watson (1999); Christiano and Fitzgerald (2003)),
but one must be aware that, once a phase shift is introduced like that of the CF filter, it changes
the correlation function between inflation and unemployment. This may modify the form of
the Phillips curve, making any further investigation meaningless.

Finally, we remark that nonstationary filters do not preserve purely harmonic signals, as
we show in Section 5.1.

5 Applications

5.1 Comparison on the Basis of an Artificial Series

To test the performance of all the previously considered filters on known grounds, we apply
them to an artificial series given by a simple harmonic, thus stationary, signal containing only
two periods, that is, 6 years and 1.5 years

u; = sin <22%> —0.15sin <2%‘7> , (25)
where 5 = 1,...,120 and the data are supposed quarterly, that is, 30 years of data. We filter
(25) on the band [1.5,6] years, so that both cutoff frequencies are submultiples of the signal
duration.

The results are shown in Figure 8. The first thing we notice is that the HW filtered series
suffers less from compression than the others, while the HP filtered series loses approxima-
tively 50% of the original amplitude. Second, ignoring for obvious reasons the BK filtered
series, the edges of the HW-filtered series follow those of the original series remarkably well,
as is expected for harmonic series, while both the CF-filtered and the HP-filtered series de-
part from them. Third, the HP-filtered series shows, as we expected, a slight phase shift at
the edges, whereas the CF-filtered series has a progressive phase drift that affects each fre-
quency component differently, since the shape of the original signal is not preserved. Thus,
not surprisingly, a stationary signal containing 1.5years and 6years components is turned,
after application of the CF filter, into a nonstationary one, the phase between the two com-
ponents varying with time while their mean frequencies have been increased to (1.49 years)™!
and (5.7 years) ! respectively.

All these shortcomings become less important when the series length is increased, but op-
erationally the CF filter, rather than being a filter in the acknowledged sense, is best described
as a smoothing procedure whose effect on frequency components can hardly be established.
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Figure 8: Application to an Artificial Series.

5.2 Application to the Euro Zone Gross Domestic Product

In this section, we show the effect of different filters on real data. We choose as an example
the quarterly series of Euro zone gross domestic product (Figure 9, left panel), from 1970:1 to
2001:1V, thus 32 years (128 data points). The chosen band is [2, 8] years, thus the frequency
responses of the applied filters are exactly those plotted in Figures 4, 6, and 7. We emphasize
that we choose the above-mentioned band since it is virtually equivalent to the “definition” of
the business cycle ([1.5, 8] years) given in Baxter and King (1999), and the duration of the
series is multiple of both cutoff frequencies, which are thus harmonic with respect to the signal.
The length of the series is also modified for this purpose. The condition of harmonicity of the
cutoff frequencies with respect to the signal duration ensures the best performance of frequency
filters.

We choose the CF random-walk filter in its recommended non-symmetric, non-stationary
version. For the BK filter we choose K = 16 instead of 12, the value suggested in Baxter and
King (1999), for reasons stated in Section 4.2. As for the HP filter, we choose its original,
time-domain recursive version (11). We apply it twice, once with A ~ 677 (677.1298) to
obtain an 8 year-cutoff highpass filter and the other with A ~ 3 (2.9142) for the 2 year-cutoff
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Figure 9: Raw and Filtered Euro Zone GDP series.

highpass filter. We subtract the second series from the first, so that we finally select the
desired frequency band from the original series. For both the HW and the CF filters, the
data are linearly detrended prior to filtering. The least squares line is shown in Figure 9 (left
panel); it is highly significant. The detrended series is then prefiltered by means of a lowpass
HW filter with v, = (16 years) ™!, to ensure covariance stationarity and allowing the definition
of the spectrum (dotted line in Figure 10). Finally, we apply the four bandpass filters to the
resulting series.

The filtered series are shown in Figure 9 (right panel). Despite the fact that they have
similar shapes, the amplitude of their fluctuations differs, especially near the edges. In the
HP case, this is due both to the strong filter compression and to the introduced phase shift,
whereas in the BK case, it is evidence of both the compression and the truncation of the
coefficients. Instead, it reflects the non-stationarity of the CF filter, whose response amplitude
decreases close to the ends of the data set (see Figure 6).

To assess the quality of the filtering procedures, we plot, as an estimate of the true spectra,
their periodograms

N-1
P,(k) = At Z %U(J)e*i%‘]k/N

J=—(N-1)
Nl o2 Jk
= At Z Yuu(J) cos T , (26)
J=—(N—1) N

where Yy, (J) = Yuu(=J) = N1 ij:__‘](N_J)(u(j) —a)(u(j + J) — u) is the estimator of the
series autocovariance function at lag J. Of course, one may object to the non consistency of
the chosen spectral estimator. Nevertheless, each filter actually operates on the periodogram,
and, besides, the comparison is made at constant N. For these reasons we believe that the
periodogram can be used to check which, among the four filters, is the best approximation to
the ideal filter.

The periodograms of the four filtered series are plotted against those of the prefiltered in
Figure 10. The HW filtered series spectrum (top-left panel) almost exactly reproduces the
original frequency components inside the selected band and vanishes outside, except for the
frequency components near the band edges, which are compressed by the (necessary) smoothing
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Figure 10: Spectra Obtained by the Different Filtering Operations.

of the rectangular window. The CF filter causes significant compression (top right panel) in
the left part of the band. Moreover, though it performs a better attenuation than the HW filter
near the lower bound of the frequency band, there is a bothering leakage left at low frequencies
(high periods), between v = 1, and v = 0. Apart from compression, which is, however,
more pronounced than in the case of the CF filter, the BK filter (bottom left panel) does
not preserve the relative amplitudes of the components. This is due to the fluctuation of its
frequency response in the passband. Furthermore, the BK filtered series spectrum shows high
leakage in the low-frequency stopband. Contrary to the previous one, the HP filter, instead,
leaves the proportion among components unaffected inside the passband. Furthermore, it has
a much lower leakage at low frequencies compared to the BK filter. This is visible also in
Figure 4.
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6 Conclusions

To obtain an “ideal” filter, one filter selecting a finite range of frequencies with infinite resolu-
tion, requires an infinite number of data. With finite data, which is like having a lag window on
an infinite-length signal, an ideal filter cannot be realized, and compromise is necessary. Simply
truncating the filter coefficients to match the signal length produces a filter that is optimal in
the least-squares sense, but displays strong leakage and large ripples in its frequency response.
Most often, one is prepared to give up a faster transition between passband and stopband to
obtain a more reduced leakage. This is the aim of the windowed filters we propose here. In
particular, the HW filter attenuates undesired components by a factor of more than 100, even
for short-length time series.

The windowed filters can be designed for a given signal length and used to filter either
in the time or in the frequency domain. We prefer the latter, since using the whole signal
length to compute filtered values, improves the frequency resolution by exploiting all available
information. The resulting filters are both stationary and symmetric, which are fundamental
properties for preserving all timing relations among frequency components within the same
series or across different series. Moreover, bandpass and highpass windowed filters are able to
stationarize at least an I(2) process.

The good performance of the HW filter in rejecting the off-band frequency components
is checked by means of a comparison with the BK, the CF, and the HP filters. We present
a critical, in-depth review of these last three filters and confront them with the HW filter.
This is done on the basis of their frequency response and their action on both artificial and
macroeconomic time series. The HW filter proves to be a better performing tool for the
empirical study of business cycle and for establishing the correlation properties of the variables
of interest.

Finally, for the seek of completeness, we deem it advisable to mention the main limit of
these nonparametric filtering procedures, that is, their inability to extract the cycle component
if the series is known to have an integrated trend (Benati (2001); Murray (2003)). Indeed, the
integrated trend spectral amplitudes are non-zero over the whole frequency range and they
inevitably add to those of the cycle. Once the spectra have melted together, the only way
to separate the different (trend and cycle) contributions within the individual frequency com-
ponent is model-based filtering, since a nonparametric bandpass filter can perform separation
only among different components. Nevertheless, if we have no prior information on the data-
generating process, the non-structural method of spectral filtering has, in our opinion, equal
dignity as the model-based approach in extracting the business cycle. In the end, it is a matter
of business cycle definition, a thorny subject that has a long history in empirical economics
(Mills (2003)), but goes beyond the scope of this paper.
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