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A model of the stochastic convergence between business cycles

Abstract

A new non-linear parametric model, the Stochastic Cyclical Convergence Model

(SCCM), is proposed for measuring the convergence dynamics between two cycles. It

combines unobserved component models with time-varying parameter models. The

convergence between the two cycles is characterised by two time-varying parameters,

the phase-shift and the phase-adjusted correlation. A Kalman smoother-based iter-

ative procedure is developed for the model estimation. The procedure is checked on

simulated time series and the biases are quantified. SCCM models are applied to UK,

French, German and Euro-zone business cycles over the period 1960:1-2003:1. The

result is twofold: on the one hand, the British cycle progressively synchronises with

that of the Euro-zone, with a phase-shift decreasing from approximately 5 quarters

in 1990:1 to 2 quarters in 2003:1. On the other hand, the phase-adjusted correlation

between the UK and Euro-zone cycles falls from approximately 90% in 1990:1 to 60%

in 2003:1. Moreover, the French cycle converges more towards the German cycle,

than the UK one. UK shocks have asynchronous asymmetric effects and the adoption

of the euro would require improved fiscal coordination.

Keywords: convergence, synchronisation, business cycles, multivariate unobserved

components models, time-varying parameter models, Kalman filter.

JEL Classification: C13, C32, E32.

Résumé

Cet article propose un nouveau modèle paramétrique non-linéaire, dénommé le modèle

de convergence cyclique stochastique (SCCM), qui permet de mesurer les dynamiques

de convergence entre deux cycles. Ce modèle combine des modèles à composantes

inobservables avec des modèles à paramètres évolutifs. La convergence entre deux

cycles est caractérisée par deux paramètres évolutifs, la phase et la corrélation corrigée

de la phase. Une procédure itérative fondée sur le lisseur de Kalman est développée

pour estimer le modèle. Cette procédure est évaluée sur des données simulées et

les biais des estimateurs sont quantifis. Des modèles SCCM sont estimés pour les

cycles anglais, français, allemand et de la zone euro, sur la période 1960:1-2003:1. Le

principal résultat de cette méthode a deux dimensions: d’une part, le cycle anglais

se synchronise progressivement avec celui de la zone euro, puisque la phase passe

de environ cinq trimestres en 1990:1 à deux trimestres en 2003:1. D’autre part, la

corrélation, corrigée de la phase, entre les cycles du Royaume-Uni et de la zone Euro

tombe d’environ 90% en 1990:1 à 60% en 2003:1. De plus, le cycle français converge

plus que le cycle anglais vers le cycle allemand. Les chocs économiques auraient ainsi

encore des effets asynchrones asymétriques au Royaume-Uni et l’adoption de l’euro

nécessiterait des progrès en terme de coordination budgétaire.

Mots-clefs: convergence, synchronisation, cycles d’affaire, modèles à composantes

inobservables multivariés, modèles à paramètres évolutifs, filtre de Kalman.

Codes JEL : C13, C32, E32.
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A model of the stochastic convergence between business cycles

1 Introduction

Since the seminal paper on the Optimum Currency Area Theory (Mundell, 1961), the degree of

cyclical convergence among a group of countries has become a key criterion to assess whether a

currency area is feasible. The evaluation of this criterion influences the overall organisation of

a currency area. In particular, a lack of cyclical convergence might increase the role of fiscal

coordination.

Many approaches are possible for analysing the convergence between cycles. For example,

to assess whether UK and Euro-zone cycles have converged, the HM Treasury (2003) takes into

account four different quantities: the closeness of the main macroeconomic variables in the recent

period; the degree of cyclical convergence during the past decades, to measure the risk of cyclical

divergence in the future (Artis and Zhang, 1997); some structural factors like the structure of

the trade balance, the oil production asymmetry or housing markets differences; some endogenous

factors like the trade effects associated with integration into a currency area (Rose, 1999).

Empirical studies simply based on correlation coefficients (e.g. Artis and Zhang, 1997, Angeloni

and Dedola, 1999 and Wynne and Koo, 2000) have generally established the existence of an

increased convergence between euro-zone business cycles during the Exchange Currency Mechanism

(ECM) period. Belo (2001) has confirmed the existence of convergence within the euro area using

annual data from 1960 to 1999. He has also shown a persistent lead of the UK cycle over that

of the Euro-zone and a strong association between the two cycles, after correcting for this lead.

Following the approach of the historical convergence of business cycles, we try to improve on sub-

sample correlation analysis, by modelling the convergence dynamics with time-varying parameters

(see below).

Before addressing the convergence modelling issue, the business cycle has to be defined. Clas-

sical business cycles were initially defined by Burns and Mitchell (1946) as a comovement among

economic time series in terms of level (employment, business surveys, etc.). These have been

the subject of some recent papers (Harding and Pagan, 1999, Artis, Krolzig, and Toro, 2002),

that focus on turning-point analysis, in which extended Markow Switching Vector Auto-Regressive

(MS-VAR) models are applied (Hamilton, 1989). But the business cycles have received a new def-

inition (Zarnowitz, 1985) as being deviations from long-run trends rather than levels of economic

aggregates and they are called in this context growth cycles. This approach makes it possible to dis-

tinguish transitory shocks from permanent ones, a distinction that is useful for the coordination of

economic policies. The growth cycle definition is adopted in this paper, because the identification

of transitory shocks is necessary for analysing their symmetry in a currency area.

Many growth cycle models are available. In this paper, growth cycles are modelled with mul-

tivariate unobserved components models even if, for reasons of parsimony, they are pre-estimated

with the band-pass Hodrick-Prescott (HP) filter. Other growth cycle models, like Beveridge-

Nelson decomposition or Structural Vector Auto-Regressive models (SVAR), are not considered,

since they provide uninterpretable results: the transitory components do not show enough persis-

tence, a property that is generally expected from a cycle, and are sometimes negatively correlated
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with the capacity utilization rate, which is assumed to be closely related to the business cycle

(Camba-Mendez and Rodriguez-Palenzuela, 2003).

As shown by Belo (2001), the phase-shift among business cycles of different countries might

change the diagnosis concerning the correlation. Rünstler (2004) extends the multivariate unob-

served component model, in order to take into account such phase-shifts and to measure phase-

adjusted correlation coefficients. This extension is presented in Section 2.2 and will be used in this

paper.

The association degree between business cycles in a group of countries has first been defined

by the presence of common components in Vector Auto-Regressive (VAR) models. Cofeature tests

proposed by Engle and Kozicki (1993) and Vahid and Engle (1993) have been applied, for example,

by Mills and Holmes (1999) to European countries over different exchange-rate-regime time periods.

Because such an association criterion is very restrictive, Kose, Prasad, and Terrones (2003), Stock

and Watson (2003) and Bordo and Helbling (2003) have preferred to use factor models (initially

developped by Stock and Watson, 1991) and their extended versions for measuring the share of

variance explained by a common factor. As this seems to be an interesting way to formulate an

association indicator in a multivariate model, the Rünstler model is reformulated here in a common

factor framework (Section 2.3).

Cyclical convergence is generally studied with ad hoc indicators (for example correlation coeffi-

cients in Artis and Zhang, 1997) applied to estimated cycles on various sub-samples. As far as we

know, few models have been developed for studying the cyclical convergence dynamics. Recently,

Koopman and Azevedo (2004) have proposed a multivariate unobserved components model that

tries to incorporate these dynamics: the convergence is associated with a progressive reduction of

the phase-shift and an increase in the correlation between the two cycles. Koopman and Azevedo

(2004) have modelled convergence dynamics using logistic functions, by extending a model initially

developed by Rünstler (2004). But logistic functions are monotonous and do not allow transitory

divergences, thus they do not allow convergence and divergence movements to occur successively.

Indeed, each turning point is an opportunity for divergence, for example some countries might

have begun their recoveries, while others remain in deep recession.

Such recurrent divergences require a stochastic model of phase-shift and correlation coefficients,

for example a random walk model. Models with stochastic variation of regression parameters

were first proposed in Cooley and Prescott (1976). In the unobserved component framework,

a stochastic covariance model is proposed by Harvey, Ruiz, and Shepard (1994). Boone (1997)

uses time-varying parameter (TVP) regressions for measuring convergence of supply and demand

shocks, in a SVAR model. Engle (2002) formalises this mechanism in a multivariate Generalised

Auto-Regressive Conditional Heteroskedastic (GARCH) model of dynamic conditional correlation.

Although they do not take into account any phase-shift, Hallett and Richter (2004) propose an

interesting approach of the convergence between US and European business cycles: they use TVP

models for studying the evolution of the coherence (a frequency-domain concept).

In this paper, a new bivariate model is proposed, the Stochastic Cyclical Convergence Model

(SCCM), in which the phase-shift and the correlation between the two cycles follow random walk
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dynamics. Contrary to the logistic function specification of Koopman and Azevedo (2004), the

random walk processes allow for successive convergence and divergence movements. As this model

is non-linear, a specific procedure, the Iterative Kalman Smoother (IKS), is also proposed for its

estimation.

The next section contains a description of the unobserved component models of the phase-

shifted cycles, the SCCM model and its estimation procedure. In Section 3, the estimation proce-

dure is checked on simulated data. In Section 4, SCCM models are applied to UK and Euro-zone

cycles from 1960:1 to 2003:1, in order to try to verify the first test proposed by the Chancellor of

the Exchequer for UK entry into the Euro-zone. Finally, in the same section, this analysis of the

UK convergence will be supplemented by a comparison with the French convergence towards the

German business cycle.

2 A model of stochastic cyclical convergence

In this section, the bivariate stochastic cycle model (Section 2.1), its extension with phase-shifts

(Section 2.2) and its reformulation in a common factor framework (Section 2.3) are reviewed before

introducing the SCCM model (Section 2.4).

2.1 Bivariate stochastic cycle model

To model cyclical dynamics of a stationary time series vector yt, we first consider the multivari-

ate stochastic cycle model developed by Harvey and Koopman (1997). Such models are called

Seemingly Unrelated Time Series Equations (Harvey, 1989).

The bivariate case will be sufficient for the analysis carried on in this article. yt = [y1,t, y2,t]
′

is a vector of observations that depends on two unobserved components that are also vectors: a

cycle ψt =
[
ψ1,t, ψ2,t

]′, and an irregular term εt = [ε1,t, ε2,t]
′. Measurement and state equations

are written as follows:{
yi,t = [1, 0]ψ̄i,t + εi,t

ψ̄i,t = φTλψ̄i,t−1 + κ̄i,t

(1)

with i = 1, 2, t = 1, ..., n, εi,t are white independent Gaussian noises with standard errors σε,i,

ψ̄i,t =

[
ψi,t

ψ+
i,t

]
, κ̄i,t =

[
κi,t

κ+
i,t

]
and Tλ =

[
cosλ sinλ

− sinλ cosλ

]
.

Both measurement equations in the first part of the system (1) are the decomposition of series

into cycle and irregular components. In the second part of the system (1), the state equations

have a similar iterative form for both time series. Parameters λ and φ are the frequency and the

damping factor of both cycles. The disturbance vectors κt = [κ1,t, κ2,t]
′ and κ+

t =
[
κ+

1,t, κ
+
2,t

]′
are bivariate normal disturbances, which are mutually uncorrelated at all time periods and have
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covariance matrices Σκ:[
κ1,t

κ2,t

]
∼ NID(0,Σκ),

[
κ+

1,t

κ+
2,t

]
∼ NID(0,Σκ) and Σκ =

[
σ2

κ,1 ρσκ,1σκ,2

ρσκ,1σκ,2 σ2
κ,2

]
(2)

where the elements of the covariance matrix (Σκ) are defined via the standard errors (σκ,1, σκ,2)

and the correlation (ρ) of the cycle innovations (κ1,t and κ2,t). One can then verify that the cycles

are stationary ARMA(2, 1) processes (when φ < 1) and

Γ(τ) = (1− φ2)−1φ|τ | cos(λτ)Σκ (3)

is the cross-covariance function. The cross-covariance functions show that the covariance between

the two cycles is maximised when cycles are not shifted (τ = 0). It is assumed that 0 ≤ φ < 1 and

0 ≤ λ ≤ π, which implies that the cycles ψi,t are stationary cycles. The roots of the autoregressive

part are constrained to lie in the complex region, which is the usual condition of cyclical behaviour.

When λ = 0 or λ = π, the cycle ψi,t degenerates into a AR(1) process. If the damping factor φ

takes the value 0, the cycle ψi,t degenerates into a white noise.

The damping factor φ and the frequency λ are the same in both series. Cycles with the same

coefficients φ and λ are called ‘similar cycles’. The shapes of such cycles can be different, because

they depend on the variance of the disturbance, which is specific to each series. Similar cycles are

not necessarily synchronised among series, because tthe sequence of the disturbances is peculiar

to each series. When cycles are perfectly synchronised (ψ2t = aψ1t), cycles are called ‘common

cycles’. The only difference is in their strength: each cycle is proportional to the others. Common

cycles imply much stronger restrictions than similar cycles.

2.2 Bivariate stochastic cycle model with phase-shifts

The model developed by Harvey and Koopman (1997) has been extended by Rünstler (2004), who

developed a multivariate stochastic cycle model with phase-shifts. In the bivariate case, measure-

ment and state equations become{
yi,t = [cos(λξi), sin(λξi)] ψ̄i,t + εi,t

ψ̄i,t = φTλψ̄i,t−1 + κ̄i,t

(4)

The parameter ξi is the shift between both cycles. The normalisation ξ1 = 0 is imposed. The

first equation is the decomposition of the first series into cycle and irregular components. The

second equation has the same structure, but the cyclical component is expressed as a function of

hidden cycles ψ2,t and ψ+
2,t, since ξ2 6= 0. As shown below, ψ1,t and ψ2,t are synchronised, but

the transformation of ψ2,t and ψ+
2,t creates a “phase-shift” equal to ξ2 periods between the second

cycle and the first one. The correlation ρ between cyclical innovations is called the phase-ajusted

correlation and the contemporaneous correlation between both cycles is equal to ρ cos (λξ2). The

constraints ρ ≥ 0 and −π < λξ2 < π are assumed1. The cycles are stationary processes with the

1Using basic trigonometric identities, it can be shown that such constraints are equivalent to the constraint

−π/2 < λξ2 < π/2 assumed in Rünstler (2004).
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following cross-covariance function2:

Γ(τ) =
φ|τ |

1− φ2

[
σ2

κ,1 cos(λτ) ρσκ,1σκ,2 cos [λ(τ + ξ2)]

ρσκ,1σκ,2 cos [λ(τ − ξ2)] σ2
κ,2 cos(λτ)

]
(5)

If the identification conditions (0 < φ < 1, 0 < λ < π, 0 < ρ) are assumed, the cross-covariance

between the cycles is maximised when the lag operator is applied floor(ξ2) times on the second

cycle3. If φ = 0, λ = 0, λ = π or ρ = 0, the cross-covariance does not depend on ξ2 and the

phase-shift ξ2 is not identifiable.

2.3 Reformulation in a single common factor model

It is interesting to reformulate the Rünstler model in a single common factor model4 (both models

are statistically equivalent, see Koopman and Azevedo (2004)). Such a formulation allows to

distinguish common from idiosyncratic shocks. Such a model is written as follows,
yi,t = ai [cos(λξi), sin(λξi)] ψ̄

c
t + [1, 0]ψ̄∗

i,t + εi,t

ψ̄
c
t = φTλψ̄

c
t−1 + κ̄c

t

ψ̄
∗
i,t = φTλψ̄

∗
i,t−1 + κ̄∗i,t

(6)

Each series yi,t can be decomposed into a common component (a phase-shift transformation of

the common cycle ψc
t), a specific cycle ψ∗i,t and an irregular component εi,t. The parameter ai is

the weight of the common cycle in each series. It is assumed that −π < λξ2 < π and ai ≥ 0.

All innovation variables (κc
i,t, κ

+c
i,t , κ

∗
i,t, κ

+∗
i,t ) are assumed to be Gaussian, mutually and serially

uncorrelated at all time points and to have variances (σ2
κ,c, σ

2
κ,c, h

2
i , h

2
i ).

By considering disturbances, the previous decomposition of each global cycle as the sum of the

common and specific cycles can be written as the decomposition of global disturbances κt into

weighted sums of common and idiosyncratic disturbances (κc
t and κ∗t ):

κt = [a� cos(λξ)]κc
t+ [a� sin(λξ)]κ+c

t + κ∗t

where

[a� cos(λξ)] = [a1, a2 cos(λξ2)]
′
,

[a� sin(λξ)] = [0, a2 sin(λξ2)]
′
,

with κt = [κ1,t, κ2,t]
′ ∼ N(0,Σκ), κ̃c

t =
[
κc

t , κ
+c
t

]′ ∼ N(0, σ2
κ,cI2) and κ∗t =

[
κ∗1,t, κ

∗
2,t

]′ ∼ N(0,Hκ).

a is the vector of weight coefficients, ξ is the vector of shift coefficients andHκ is the diagonal matrix

of specific disturbance variances. The symbol � indicates the coefficient-by-coefficient product,

which can be used for vectors or matrices with equal dimensions. The disturbance decomposition

is unique if and only if the global disturbance variance Σκ has the following unique decomposition

Σκ = σ2
κ,caa

′ � Λ +Hκ, with Λ =

[
1 cos(λξ2)

cos(λξ2) 1

]
.

2Proof of the auto-covariance expression is given by Rünstler (2004).
3For a real x, the floor function returns the largest integer not greater than x.
4Factor models were initially used in a SVAR framework (Stock and Watson, 1991).
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This implies restrictions on the vector a and on the matrix Hκ. Thus, besides ξ1 = 0, the

normalisation constraints a1 = 1 and h1 = 0 are also imposed. As the matrix Σκ has three degrees

of freedom, the three parameters σ2
κ,c, a2 and h2 are identified. Because of the restrictions, the first

global disturbance is equal to the common disturbance: κ1,t = κc
t ,κ

+
1,t = κ+c

t . Thus, the two series

play different roles in the model: conventionally, a cycle of interest is distinguished from a reference

cycle. The properties of the cycle of interest are studied in comparison with the reference cycle.

The relation between the two cycles is characterised by two main properties: its phase and its

weight. The phase-shift is the lag relative to the reference cycle. The weight is a sort of amplitude

ratio of the cycle of interest in comparison with the reference cycle. The relation between cycles

can equivalently be characterised by the phase-shift and the phase-adjusted correlation ρ, which

can be computed with the following formula5:

ρ = a2/

√
a2
2 + h

2
2/σ

2
κ,c. (7)

It is easily verified that 0 6 ρ 6 1 is always true. The phase-shift identification condition (ρ > 0)

is equivalent to (σκ,c > 0, a2 > 0). As explained in Rünstler (2004), the phase-shift and the phase-

adjusted correlation concepts are closely related to frequency-domain concepts (the phase and the

coherence). But the model-based approach avoid potential distorsions of the filter-based approach,

as documented by Harvey and Trimbur (2003).

If there is no specific cycle (h2 = 0), the correlation between the two phase-adjusted cycles is

equal to one (ρ = 1). In other words, the rank of the disturbance covariance matrix is equal to one.

In a sense closed to the initial definition of Engle and Kozicki (1993), both series share a common

cycle. In this model, the common cycle case is less restrictive than in the Harvey and Koopman

(1997) model: cycles are not completely synchronised (they can be phase-shifted in relation to each

other).

2.4 Stochastic Cyclical Convergence Model (SCCM)

We extend the previous bivariate model (i.e. a multivariate stochastic cycle model with phase-shifts

expressed in a single common factor framework) to incorporate the convergence dynamics. This

extension differs from that of Koopman and Azevedo (2004). Each property of the cycle of interest,

regard to the reference cycle, is modelled with a time-varying (tv) parameter: the convergence is

characterised by the tv-phase ξ2,t and the tv-weight a2,t. These tv-parameters are random walk

processes. The normalisation conditions become: ξ1,t = 0 and a1,t = 1. The Stochastic Cyclical

Convergence Model (SCCM) is written as follows:

yi,t = ai,t

[
cos(λξi,t), sin(λξi,t)

]
ψ̄c

t + [1, 0] ψ̄∗
i,t + εi,t

ψ̄
c
t = φTλψ̄

c
t−1 + κ̄c

t

ψ̄
∗
i,t = φTλψ̄

∗
i,t−1 + κ̄∗i,t

ai,t = ai,t−1 + γi,t

ξi,t = ξi,t−1 + δi,t

(8)

5The contemporaneous correlation Corr(ψ1,t, ψ2,t) between both cycles would be cos(λξ2)ρ.
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εi,t, κc
t , κ

+c
t , κ∗i,t, κ

+∗
i,t , γi,t and δi,t are white independent Gaussian noises, with standard errors

σε,i, σκ,c, σκ,c, hi, hi, σγ,i and σδ,i. Using the normalisation constraints,

a1,t = 1, ξ1,t = 0, h1 = 0, (9)

in this particular formulation, the second cycle is generated by the propagation of the first cycle.

The propagation is characterised by the tv-phase (ξ2,t) and the tv-weight (a2,t), which should again

verify −π < λξ2,t < π and a2,t ≥ 0. But it can equivalently be characterised by the tv-phase (ξ2,t)

and the phase-adjusted tv-correlation (ρt), by computing:

ρt = a2,t/
√
a2
2,t + h

2

2
/σ2

κ,c

In this case, the auto-covariance function6 of the cycles at a lag τ > 0 and a date t, conditional

on a realisation of the tv-correlation time series ρ1:t = [ρ2,1, ..., ρ2,t]′ and of the tv-phase one

ξ1:n = [ξ2,1, ..., ξ2,n]′ is:

Γa,ξ(τ ; t) =
φτ

1− φ2

[
σ2

κ,1 cos(λτ) ρ̃t−τσκ,1σκ,2 cos
[
λ(τ + ξ2,t)

]
ρ̃t−τσκ,1σκ,2 cos

[
λ(τ − ξ2,t−τ )

]
σ2

κ,2 cos(λτ)

]
, (10)

with ρ̃t = (1− φ2)
∑t

i=0 φ
2iρt−i. At a lag τ < 0, the autocovariance is given by

Γρ,ξ(τ , t) =
φ−τ

1− φ2

[
σ2

κ,1 cos(λτ) ρ̃tσκ,1σκ,2 cos
[
λ(τ + ξ2,t)

]
ρ̃tσκ,1σκ,2 cos

[
λ(τ − ξ2,t−τ )

]
σ2

κ,2 cos(λτ)

]
. (11)

At time t, if φ = 0, λ = 0, λ = π or (ρ1:t = 0t), the autocovariance matrix Γρ,ξ(τ , t) does not

depend on ξ2,t and the phase-shift ξ2,t is not identifiable. Thus, the identification conditions φ > 0,

0 < λ < π and (ρt > 0, ∀t) are assumed.

The cyclical convergence at a date t is defined in this paper by the two following conditions:

perfect synchronisation (ξ2,t = 0) and perfect correlation (ρt = 1). In the case of a perfect and

permanent synchronisation, the phase-shift is assumed constant (σδ,2 = 0) and equal to zero

(ξ2,0 = 0). For the perfect symmetric case, the correlation is assumed constant and equal to one,

which is equivalent to assuming (σγ,2 = 0, h2 = 0). Finally, if σδ,2 = 0, ξ2,0 = 0, σγ,2 = 0 and

h2 = 0 simultaneously, cycles are synchronised and symmetric. This is the common cycle case,

initially defined by Engle and Kozicki (1993): a linear combination of the cycles is a white noise;

the only difference between the two cycles is their amplitude.

2.5 Estimation methodology

As the issue raised does not directly concern the trend/cycle decomposition, if series of interest

xi,t and x2,t have a trend, they are detrended and smoothed with band-pass HP filters before the

iterative estimation procedure:

yi,t = HPα(xi,t −HP β(xi,t)) (12)

6Proof of the auto-covariance expression is given in Appendix A.
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where the operator HP transforms a series x into its trend, using a Hodrick-Prescott filter. The

choice of the parameter of the operator (here α or β) depends on the considered series. For the the

empirical application in section 4, where series of interest are quarterly GDP time series, periods

between 1.5 and 10 years are filtered7 by setting α = 1 and β = 1, 600.

The parameter vector of the SCCM model, denoted by p =
[
φ, λ, h2, σκ,c, ξ2,0, σδ,2, θ2,0, σγ,2

]′
for convenience8 contains: the damping factor (φ), the frequency (λ), the specific and common

standard deviations (h2, σκ,c), the tv-shift parameters (ξ2,0, σδ,2) and the tv-weight parameters

(θ2,0, σγ,2). The tv-parameters (ξ2,t, a2,t) and p are transformed, in order to facilitate their esti-

mation and to take into account constraints. The transformed parameters and tv-parameters are

called θp = [θφ, θλ, θh, θκ,c, θξ,0, θδ, θa,0, θγ ]′ and (θξ,t, θa,t). The parameters can then be calculated

by the following formula:

φ =
|θφ|√
1 + θ2φ

, λ =
2π

2 + |θλ|
, h2 = θh, σκ,c = θκ,c,

ξ2,0 =
2 + |θλ|

2π
θξ,0, σδ,2 =

2 + |θλ|
2π

θδ√
n
, a2,0 = θa,0, σγ,2 =

θγ√
n
.

and the tv-parameters by

ξ2,t =
2 + |θλ|

2π
θξ,t, a2,t = θ2,t.

The damping factor (φ) is not allowed to be negative or higher than 1. The tv-phase parameters

(ξ2,0 and σδ) are rescaled with the frequency λ. This transformation imply a simpler constraint

−π < θξ,t < π, instead of −π/λ < ξ2,t < π/λ. The standard deviations σδ,2 and σγ,2 are rescaled

with the square root of the sample size (
√
n). This transformation, used in Stock and Watson

(1998), allows the direct definition of the order of magnitude of θξ,t and θa,t (instead of their

innovations) by the parameters θδ and θγ .

The difficulty in estimating the SCCM model with the filtered series y1,t and y2,t, then, comes

from the non-linear transformation of the tv-parameters θξ,t and θa,t in the measure equation. The

model cannot be written in a linear state-space form and a linear Kalman filter cannot be directly

applied to approximate maximum likelihood estimates. An iterative Kalman smoother procedure

(described in Appendix B and called IKS), in which the equation is linearly approximated9 at

each step n around previous step estimates, is therefore used to estimate the parameters θp and

the tv-parameters (θξ,t, θa,t). The procedure is initialised by pre-modelling the business cycles in

a common factor Rünstler model. The procedure is iterated by applying the Kalman smoothers

with diffuse initialisation at each step, until the estimates are stabilised, i.e. until the iteration

error e(n) is lower than a fixed value. The iteration error is computed as the standard error of the

difference between estimates at iteration (k) and (k + 1).

7Parameters of the HP band-pass filter have been found with a formula detailed in Iacobucci (2005).
8There are no irregular component (σε,1 = σε,2 = 0), as irregular components are pre-filtered from the real data

sets.
9For estimating non-linear models, Durbin and Koopman (2001) proposed such a method. However, they also

recommend improving the estimation with importance sampling techniques. This improvement is let for further

research.
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3 Simulation results

The numerical properties of the estimation procedure, suggested in Section 2.5, are now analised on

simulated time series. After a brief presentation of the simulation methodology (Section 3.1), the

main results are detailed for a reference case in Section 3.2. Then, the influence of the parameter

settings is studied in Section 3.3.

3.1 Simulation methodology

For a given vector of parameters θp and j = 1, ..., N , the simulation algorithm is the following:

• (κc(j)
t , κ

+c(j)
t , κ

∗(j)
2,t , κ

+∗(j)
2,t , δ

(j)
2,t , γ

(j)
2,t) are simulated with Gaussian independent distributions.

• (y(j)
1,t , y

(j)
2,t ) are generated within the SCCM model with innovations computed in the previous

step.

• IKS is applied to (y(j)
1,t , y

(j)
2,t ) and delivers estimates of parameters (θ̂

(j)

p ) and tv-parameters

(θ̂
(j)

ξ,t , θ̂
(j)

a,t).

• The ratio of root mean square errors (RRMSE) of the tv-parameter estimates (x̂t), relative

to the true values (xt), are computed with the following formula:

RRMSE(j)(x) =

√
1

n−1

t=n∑
t=1

(x(j)
t − x̂

(j)
t )2√

1
n−1

t=n∑
t=1

(x(j)
t − E(x(j)))2

,

for x = ξ2, a2. The standard error of each IKS estimate x̂
(j)
t is rescaled with the stan-

dard deviation of each tv-parameter x(j)
t . RRMSE(j)(x) is expected to be lower than 1.

If RRMSE(j)(x) > 1, the variance of the tv-parameter x is not explained at all.

Finally, the median θ̂p of parameter estimates (θ̂
(j)

p )1≤i≤N are computed over the N oc-

curences (with x = ξ2, a2) together with the median RRMSE(x) based on the tv-parameters errors

(RRMSE(j)(x))1≤i≤N . The RRMSE criteria are always positive. For a given tv-parameter (x), the

lower the RRMSE is, the more precise is the estimate (x̂). A correct estimate of x is expected to

have a RRMSE lower tan one, since it means that the variance of the tv-parameter x is generally

not be explained at all.

3.2 Simulation results in the reference case

In the reference case (case 1), the vector of parameters p estimated in Section 4.2, for the UK

and Euro-zone business cycles, is used. Common and specific cycles have the same damping

factor (φ = 0.97), the same frequency (λ = 0.28) and the same innovation standard deviations

(σκ,c = 0.21 and h2 = 0.12). The tv-phase and the tv-weight have the same initial value (ξ2,0 =

12
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3.74, a2,0 = 2.25) and the same standard deviation for innovations (σδ,2 = 0.15, σγ,2 = 0.08). The

vector of transformed parameters is deduced from the previous values:

θp = [4, 20.44, 0.12, 0.21, 0.88, 0.56, 1.25, 1.05]′ .

In the reference case, the sample period has the same length as that in Section 4 (n = 173). IKS

is applied on N = 2, 000 occurences, for the parameter setting θp. To give an idea how the model

looks like in the reference case, an example data set is plotted. Simulated cycles and tv-parameters

are reported in Figure 1.

Figure 1: Example of cycles and tv-parameters simulated with a SCCM model (case 1)
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Estimation results for each simulation case are presented in Table 1. Estimates of the frequency

(θ̂λ = 20.13) and of the standard deviation of the common innovation (θ̂κ,c = 0.20) are close to

their true values (20.44 and 0.21), while the damping factor (θφ = 4) is slightly under-estimated

(θ̂φ = 3.51) and the standard deviation of the specific innovation (θh = 0.12) is slightly over-

estimated (θ̂h = 0.15).

The tv-parameters initial value (θξ,0, θa,0) are well estimated, but standard deviations of tv-

parameters innovations (θδ = 0.56 and θγ = 1.05) are generally under-estimated (θ̂δ = 0.09 and

θ̂γ = 0.28). This might be related to the pile-up problem: in time-varying parameters models,

when the variance of a tv-parameter (θδ or θγ) has a weak value relative to the variance of the

residuals (θh), its maximum likelihood estimate is downward biased and has a strictly positive
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probability to degenerate to zero (Stock and Watson, 1998). This problem has been treated here,

by using diffuse initialisation of the tv-parameters. Stock and Watson (1998) have shown that a

diffuse initialisation limit the downward bias.

It may be noticed by looking at θ̂κ,c, θ̂h, and θ̂a,0, that the initial value of the phase-adjusted

correlation is under-estimated. Its estimate

ρ̂0 = â2,0/

√
â2
2,0 + ĥ

2

2
/σ̂2

κ,c (13)

is equal to 0.85, while the true value (ρ0) is equal to 0.91. This is mainly caused by the over-

estimation of the specific innovation standard deviation (h2).

However, IKS provides satisfactory estimates of the tv-parameters, as both RRMSE are lower

than one. The tv-weight estimates appear more precise than the tv-phase ones (with a RRMSE

equal to 0.26 against 0.43).

The influence of the sample size on these results is analised by setting the sample size to a lower

(n = 100) and a larger value (n = 500). A larger sample (case 1b) allows to improve estimates of

the damping factor (θ̂φ), the frequency (θ̂λ), the standard deviations of cycle innovations (θ̂h and

θ̂κ,c) and the initial value of the tv-weight (θ̂a,0). Moreover, the tv-parameter estimates (θ̂ξ,t and

θ̂a,t) are more precise than in the reference (RRMSE are lower). Unfortunately, the pile-up problem

becomes more serious: standard deviations of tv-parameters (θ̂δ and θ̂γ) are more under-estimated

than in the reference case. For a smaller sample (case 1a), as expected, the results are the opposite.

Table 1: Parameters and RRMSE estimates of the SCCM model for various sample sizes.

Case Sample Parameter estimates RRMSE

number size (n) θ̂φ θ̂λ θ̂h θ̂κ,c θ̂ξ,0 θ̂δ θ̂a,0 θ̂γ θξ,t θa,t

Case 1 173 3.51 20.13 0.15 0.20 0.90 0.09 1.22 0.28 0.43 0.26

Case 1a 100 3.27 20.05 0.15 0.20 0.90 0.09 1.20 0.30 0.61 0.35

Case 1b 500 3.81 20.22 0.14 0.21 0.90 0.05 1.24 0.22 0.27 0.16

Parameter values 4.00 20.44 0.12 0.21 0.88 0.56 1.25 1.05 - -

Parameters have been estimated with the iterated Kalman smoother (IKS) procedure. The

ratios of root mean square errors (RRMSE) criteria have been computed for IKS estimates

of the tv-parameters.

3.3 Influence of the parameter settings on the simulation results

In order to study the simulation results sensitivity to each specific parameter, the elements of the

vector θp have been individually changed so that sixteen further vectors of parameters have been

defined. Each parameter has been set equal to values (θp = 0.5× θp and θp = 1.5× θp) lower and

larger than the reference one (θp), keeping the other parameters equal to their reference values.

IKS is applied on N = 2, 000 occurences, for each case l (l = 1 to 17). The estimated parameters

and RRMSE are reported in Table 2.
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As expected, when parameters are set to values larger than those of reference (cases 3, 5, 7, 9,

11, 13, 15 and 17), the results are the opposite of those obtained with lower values.

In cases 2, 5, 7, 8 and 14, the parameters are set close to their boundary values defined by the

conditions φ > 0, 0 < λ < π and (ρt > 0, ∀t). In cases 2 and 5, the damping factor φ and the

frequency λ are closer to 0 than in the reference case. In cases 7, 8 and 14, we deduce from (13)

that the initial value ρ0 of the tv-correlation is closer to 0 than in the reference case. As shown

in Section 2.4, the identification conditions are necessary for identifying the tv-phase ξ2,t. Thus,

by choosing such parameters, the estimation of the transformed tv-phase θξ,t is more difficult and

its RRMSE is worse than in the reference case. For the same cases, the RRMSE of the transformed

tv-weight θa,t are also generally worse than in the reference case.

In case 12, for the transformed tv-phase θξ,t, the transformed standard deviation of its innova-

tions θδ is set to a lower value θδ. As expected, the pile-up problem is reinforced and the standard

deviation estimate θ̂δ is more downward biased than in the reference case. The estimate â2,0 of

the initialising value become slightly upward-biased. Other parameter estimates are not deterio-

rated. As the estimate θ̂ξ,t of the transformed tv-phase is almost constant over time, its RRMSE

criterion (0.92) is worse than in the reference case, approaching the value of one. Concerning the

transformed tv-weight θa,t, the RRMSE is almost unchanged (0.25). The case 16 is very similar: if

we set θγ to a lower value θγ , the pile-up problem is reinforced for the transformed tv-weight θa,t

and its RRMSE is worse than in the reference.

Summing up, the tv-parameter estimates provided by IKS are all correct, because their RRMSE

are all lower than one. The results are generally less precise (RRMSE are higher) than in the

reference case, particularly for the tv-phase, when the parameters are set close to their boundary

values (cases 2, 5, 7, 8 and 14). Because of the pile-up problem, the results are also worse, when

tv-parameter innovations have low standard deviations (cases 12 and 16).

4 Empirical results

After a short presentation of the data sources, the estimated models are presented and the cyclical

convergence is described with its two components, the tv-phase and the tv-correlation. In Sec-

tion 4.2, we use the SCCM models outlined above to assess whether the first criterion for UK entry

into the euro-zone is met, that is whether the UK business cycle has converged towards the Euro-

zone cycle. In Section 4.3, using the German cycle as a reference, the UK cyclical convergence is

compared with that of a major euro-zone member (France).

4.1 Data sources

The GDP time series are taken from the Eurostat database and have been retropolated to 1960

with the OECD Business Sector Database (BSDB). The series are quarterly and expressed in 1995

value of euro from 1960:1 to 2003:1. They have been seasonally adjusted and, after a logarithm

transformation, they have been detrended with band-pass HP filters (parameters equal to 1 and

1,600). Because of the detrending step, results should be cautiously interpreted at the end of the
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Table 2: Parameters and RRMSE estimates of the SCCM model for 17 parameter sets

Case Parameter values Parameter estimates RRMSE

number θφ θλ θh θκ,c θξ,0 θδ θa,0 θγ θ̂φ θ̂λ θ̂h θ̂κ,c θ̂ξ,0 θ̂δ θ̂a,0 θ̂γ θξ,t θa,t

Case 1 4.00 20.44 0.12 0.21 0.88 0.56 1.25 1.05 3.51 20.13 0.15 0.20 0.90 0.09 1.22 0.28 0.43 0.26

Case 2 2.00 20.44 0.12 0.21 0.88 0.56 1.25 1.05 1.99 19.96 0.16 0.20 0.89 0.02 1.24 0.17 0.53 0.28

Case 3 6.00 20.44 0.12 0.21 0.88 0.56 1.25 1.05 4.55 20.15 0.15 0.20 0.90 0.13 1.21 0.35 0.42 0.26

Case 4 3.99 10.13 0.12 0.21 0.88 0.56 1.25 1.05 3.54 10.11 0.15 0.20 0.89 0.06 1.25 0.29 0.33 0.20

Case 5 3.99 30.39 0.12 0.21 0.88 0.56 1.25 1.05 3.49 30.04 0.14 0.20 0.89 0.11 1.23 0.30 0.54 0.31

Case 6 4.00 20.44 0.06 0.21 0.88 0.56 1.25 1.05 3.49 20.12 0.11 0.20 0.91 0.13 1.23 0.35 0.39 0.22

Case 7 4.00 20.44 0.18 0.21 0.88 0.56 1.25 1.05 3.54 20.16 0.20 0.20 0.89 0.05 1.21 0.23 0.49 0.32

Case 8 4.00 20.44 0.12 0.11 0.88 0.56 1.25 1.05 3.56 20.18 0.13 0.10 0.88 0.03 1.20 0.20 0.58 0.38

Case 9 4.00 20.44 0.12 0.32 0.88 0.56 1.25 1.05 3.50 20.12 0.18 0.30 0.90 0.11 1.23 0.32 0.40 0.23

Case 10 4.00 20.44 0.12 0.21 0.44 0.56 1.25 1.05 3.53 20.16 0.13 0.20 0.51 0.07 1.29 0.35 0.45 0.18

Case 11 4.00 20.44 0.12 0.21 1.32 0.56 1.25 1.05 3.51 20.12 0.16 0.20 1.29 0.10 1.06 0.23 0.44 0.35

Case 12 4.00 20.44 0.12 0.21 0.88 0.28 1.25 1.05 3.52 20.14 0.15 0.20 0.91 0.01 1.29 0.29 0.92 0.25

Case 13 4.00 20.44 0.12 0.21 0.88 0.84 1.25 1.05 3.49 20.15 0.15 0.20 0.88 0.18 1.12 0.29 0.30 0.28

Case 14 4.00 20.44 0.12 0.21 0.88 0.56 0.63 1.05 3.52 20.16 0.13 0.20 0.88 0.08 0.58 0.25 0.65 0.22

Case 15 4.00 20.44 0.12 0.21 0.88 0.56 1.88 1.05 3.52 20.13 0.18 0.20 0.90 0.08 1.86 0.27 0.37 0.39

Case 16 4.00 20.44 0.12 0.21 0.88 0.56 1.25 0.53 3.55 20.16 0.15 0.20 0.90 0.06 1.23 0.10 0.39 0.66

Case 17 4.00 20.44 0.12 0.21 0.88 0.56 1.25 1.58 3.48 20.13 0.15 0.20 0.89 0.13 1.19 0.47 0.49 0.17

Parameters have been estimated with the iterated Kalman smoother (IKS) procedure. The ratios of root mean square error (RRMSE)

criteria have been computed for IKS estimates of the tv-parameters.
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sample10, i.e. from 2000:1 to 2003:1. Estimation of SCCM models has been carried out using

algorithms and routines written on EViews.

4.2 On the convergence of UK and euro-zone cycles

The bivariate SCCM model has been estimated with the IKS procedure applied to the UK and

Euro-zone detrended GDP series (UK-EU case). The euro-zone cycle is chosen as the reference

cycle. Parameter estimates are reported in Table 3 and tv-parameter estimates are presented in

the Figure 2. Cycle parameters estimates (φ and λ) are standard for HP filtered GDP series. In

particular, the estimated frequency implies a period equal to 22 quarters, i.e. 6 years.

As regards the tv-phase estimates, they are always positive, with an average equal to 3 quarters:

these values are lower during the 1970s, higher at the beginning of the 1980s and they decrease

towards the end of the sample. UK recessions tend to be synchronised with that of the euro-zone

during the 1970s, because of major symmetric oil shocks. At the beginning of the 1980s, UK recov-

ery leads that of the euro-zone by one year. Thereafter, the euro-zone slowdown occurred almost

1.5 years later than that of the UK (in 1993) because of the German re-unification. Finally, after

the high growth at the end of the 1990s, the United Kingdom and the euro-zone both experienced

a slowdown in 2001. The UK-German synchronisation seems to have been reinforced towards the

end of the 1990s.

Concerning the tv-correlation estimates, after some strong movements in the 1960s, an increase

occurs during the 1970s (symmetric oil shock) and the tv-correlation remains quite stable and very

high (around 90%) during the 1980s. However, in the 1990s, despite the cyclical synchronisation,

the tv-correlation decreases (towards 60% in 2003:1), with the UK cycle particularly dampened

relative to that of the euro-zone. This may be related to fiscal policies differences: the UK public

deficits has been contra-cyclical, whereas that of the euro-zone has not (Barrell and Weale, 2003).

During this period, contrary to the ”golden rule” followed by the UK government, the euro-zone

governments have followed a deficit rule (defined by the Growth and Stability Pact) that did not

take into account the timing of business cycles.

Until the end of the 1990s, the results are generally consistent with the previous papers, which

used a similar approach of the cyclical convergence (Belo, 2001 and Koopman and Azevedo, 2004),

but the approach is improved at the end of the 1990s. With simple correlation coefficients, Belo

(2001) has also shown a persisting lead of the UK cycle relative to that of the euro-zone and,

after a correction for this lead, a strong association between the two cycles. These results have

been confirmed by Koopman and Azevedo (2004) with an extended unobserved component model.

However, as explained previously, Koopman and Azevedo (2004) model monotonous evolution of

the phase and the phase-adjusted correlation. Their model does not allow for a succession of

convergence and divergence movements. Thus, in the UK-EU case, they estimate a global increase

of the phase-adjusted correlation since 1970 and do not detect the recent decrease we show in this

10Such a filter, as other univariate methods, provide very uncertain estimates at the end of the sample (Orphanides

and van Norden, 2002). For the euro area, Rünstler (2002) has shown that cycle estimates provided by univariate

methods, in particular the HP filter, are uncertain during the last three years of the sample.

17



A model of the stochastic convergence between business cycles

section. This decrease was also undetected by Belo (2001). He computed moving-average indicators

with a window of 12 years. With the annual sample 1960-1999, such indicators become useless for

detecting any variation occuring after 1993 (12/2 = 6 years before the end of the sample).

Returning to the issue raised by the UK government about entering the euro-zone, the estimated

SCCM model shows mixed results: an improved synchronisation between UK and EU cycles but

also a decreased correlation. UK entry would thus require an improvement in fiscal coordination,

in order to deal with persistent asymmetric shocks.

Table 3: Parameters estimates for UK–EU

Data set φ̂ λ̂ ĥ2 σ̂κ,c ξ̂2,0 σ̂δ,2 â2,0 σ̂γ,2

UK–EU 0.97 0.28 0.12 0.21 3.74 0.15 2.25 0.08

Parameter estimates (p̂) have been deduced from those (θ̂p) esti-

mated with the iterated Kalman smoother (IKS) procedure.

Figure 2: Empirical results for UK-EU
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4.3 On the convergence of French, UK and German cycles

One may go on asking whether the UK convergence process differs from that of the euro-zone

countries. A brief comparison will be conducted with the French case. A direct bias may affect

such a comparison: UK does not belong to the Euro-zone aggregate, contrary to France. This

difference might induce an artificial over-estimation of synchronisation and correlation, in the

French case regard to that of the UK. Therefore, the euro-zone cycle is not chosen as reference

cycle and is replaced by that of Germany, which is the biggest country of the euro-zone and has

been the currency anchor during the European Currency Mechanism (ECM) period (1979-1999).

Two SCCM models are estimated: one for the couple United Kingdom/Gemany (UK-GE) and

one for the couple France/Germany (FR-GE). The parameter estimates are reported in Table 4.

Cycles and tv-parameter estimates are presented in Figure 3

For the UK-GE case, the results are very similar to those described in the UK-EU case (Sec-

tion 4.2). Indeed, the German cycle is the major component of the Euro-zone cycle (Bentoglio,

Fayolle, and Lemoine, 2001). However, the UK-GE tv-correlation decrease occurs later and is less

strong than in the UK-EU case. The tv-correlation decrease begins in the mid-1990s with a fall to

0.8 in 2003:1.

In the FR-GE case, tv-parameters are very different. The tv-phase is always lower for FR-GE

than for UK-GE. In the 1970s, the French cycle generally had a lag of one or two quarters relative

to that of Germany. A small lead (around two quarters) appeared at the beginning of the 1990s,

because of the reunification, and this lead has dwindled away since the mid-1990s.

The phase-adjusted tv-correlation is high in the 1970s (oil shocks). Isolated economic policies

have led to a fall in the tv-correlation at the beginning of the 1980s. Since then, a political reori-

entation towards Europe has implied a convergence, which appears in the form of a tv-correlation

increase towards 0.95 in 2003:1. Unlike the UK, France and Germany experienced strong fluctua-

tions between 1997 and 2003 and their governments amplified these fluctuations with pro-cyclical

fiscal policies.

In terms of synchronisation and correlation, the degree of convergence between French and

German cycles appears to be very strong since 1995, whereas a correlation divergence has emerged

between UK and Germany.

Table 4: Parameters estimates for FR–GE and UK–GE

Data set φ̂ λ̂ ĥ2 σ̂κ,c ξ̂2,0 σ̂δ,2 â2,0 σ̂γ,2

UK–GE 0.97 0.29 0.11 0.31 1.72 0.13 0.66 0.02

FR–GE 0.97 0.29 0.15 0.31 3.38 0.20 0.37 0.04

Parameter estimates (p̂) have been deduced from those (θ̂p) esti-

mated with the iterated Kalman smoother (IKS) procedure.
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Figure 3: Empirical results for FR–GE and UK–GE
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5 Conclusion

The SCCM model is an extension of the models developed by Rünstler (2004) and Koopman and

Azevedo (2004). The main contribution of the paper concerns the dynamic property of the SCCM

model: it formalises the stochastic evolution of the relation between two cycles, which is charac-

terised by the tv-phase and the phase-adjusted tv-correlation. An iterated Kalman Smoother (IKS)

procedure is proposed and checked on various simulated data sets, showing that the IKS procedure

provides estimates that capture correctly the dynamics of the tv-parameters. However, the vari-

ance of the tv-parameters is downward biased, because of the pile-up problem that was detailed

for the general TVP models in Stock and Watson (1998). An analysis of the influence of the pa-

rameter settings on the simulation results shows that the tv-phase estimates are less precise, when

the parameters are set close to their boundary values. Such a problem should also occur when

estimating the phase-shift with the models of Rünstler (2004) and Koopman and Azevedo (2004).

The estimation procedure assessment was not carried out in these papers.

The paper also provides some empirical results. SCCM models have been applied on British,

French, German and euro-zone cycles, from 1960:1 to 2003:1. During the 1970s, oil shocks imply

synchronised recessions with high correlations. From 1980 to 1995, the United Kingdom has known

a substantial lead relative to the euro-zone, despite highly correlated shocks. Since the mid-1990s,

the UK cycle has been considerably dampened and become progressively more synchronised with
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the euro-zone cycle. Hence, contrary to France, the two criteria are not validated: the synchro-

nisation convergence has improved, but was not fully achieved; after a correlation convergence in

the 1970s, a correlation divergence occured during the 1990s. The recent correlation divergence

is impossible to detect with the methodologies employed in some recent papers (Koopman and

Azevedo, 2004 and Wynne and Koo, 2000). This divergence can have important consequences: as

the risk of asymmetric shocks remains, the entry of the United Kingdom into the Euro-zone would

require improved fiscal coordination.

Although our convergence model has proved to be an interesting starting point for testing the

stochastic convergence of business cycles in a probabilistic framework, some improvements have

been left for future research. The estimation procedure of our non-linear model could be made

more precise by using importance sampling techniques. In particular, such techniques would make

it possible to simulate posterior distribution of the tv-parameters and to estimate their confidence

bands. The model could be applied with a higher multivariate dimension. An explanation of the

convergence could be given by integrating exogenous variables, like economic policiy indicators

(interest rates, exchange rates and fiscal indicators) in the convergence mechanism.
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Appendices

A Auto-covariance of business cycles in a SCCM model

A.1 Simple multivariate form of the SCCM model

The SCCM model (8) is statistically equivalent (has the same cross-autocovariance functions) to

the following model:

y1,t = [1, 0] ψ̄1,t + ε1,t,

y2,t =
[
cos(λξ2,t), sin(λξ2,t)

]
ψ̄2,t + ε2,t,

ψ̄i,t = φTλψ̄i,t−1 + κ̄i,t,

with ψ̄1,t =
[
ψi,t, ψ

+
i,t

]′
and κ̄i,t =

[
κi,t, κ

+
i,t

]′
. The initial conditions at t = 0 are defined by

ψ̄i,0 = κ̄i,0. κt = [κ1,t, κ2,t]
′ and κ+

t =
[
κ+

1,t, κ
+
2,t

]′
are bivariate normal disturbances mutually

uncorrelated at all time periods and have covariance matrices Σκ,t :[
κ1,t

κ2,t

]
∼ NID(0,Σκ),

[
κ+

1,t

κ+
2,t

]
∼ NID(0,Σκ), with Σκ,t =

[
σ2

κ,1 ρtσκ,1σκ,2

ρtσκ,1σκ,2 σ2
κ,2

]
.

κ̄i,t are bivariate normal disturbances and have 2× 2 covariance matrices σ2
κ,iI2 (with I2 the 2× 2

identity matrix).

Given that

E
(
ψ1,0ψ2,0

∣∣ρ1:t

)
= E (κ1,0κ2,0|ρ1:t) = E

(
κ+

1,0κ
+
2,0

∣∣ρ1:t

)
= E

(
ψ+

1,0ψ
+
2,0

∣∣ρ1:t

)
,

we can prove recursively that

E
(
ψ1,tψ2,t

∣∣ρ1:t

)
= E

(
ψ+

1,tψ
+
2,t

∣∣ρ1:t

)
(A.1)

for each t.

A.2 Cross-autocovariance between bivariate cycles

Before considering the covariance matrix of business cycles, conditional on the tv-parameters, sinc

(Tλ)τ = Tλτ for all integer τ , we compute the cross-autocovariance Ωρ(τ , t) between the bivariate

cycles ψ̄1,t and ψ̄2,t−τ at a lag τ > 0, conditional on ρ1:t = [ρ1, ..., ρt]′:

Ωρ(τ , t) = E
(
ψ̄1,tψ̄

′

2,t−τ

∣∣∣ρ1:t

)
(A.2)

= E

[(
φτTλτ ψ̄1,t−τ +

τ−1∑
i=0

φiTλiκ̄1,t−i

)
ψ̄

′

2,t−τ

∣∣∣∣∣ρ1:t

]
= φτTλτΩρ(0, t− τ),

with E [ ·|ρ1:t] the “conditional on ρ1:t” expectation. Given that ψ̄1,t−1 ⊥κ̄2,t and ψ̄2,t−1 ⊥κ̄1,t,

the cross-covariance Ωρ(0, t) between ψ̄1,t and ψ̄2,t, conditional on ρ1:t, is given by

Ωρ(0, t) = E
(
ψ̄1,tψ̄

′

2,t

∣∣∣ρ1:t

)
= E

[(
φTλψ̄1,t−1 + κ̄1,t

) (
φTλψ̄2,t−1 + κ̄2,t

)′∣∣∣ρ1:t

]
= φ2TλΩρ(0, t− 1)T ′λ + ρtσκ,1σκ,2I2,
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Since ψ+
1,t ⊥ ψ2,t, ψ1,t ⊥ ψ+

2,t and from (A.1), it follows that

Ωρ(0, t) =

[
E
(
ψ1,tψ2,t

∣∣ρ1:t

)
E
(
ψ1,tψ

+
2,t

∣∣ρ1:t

)
E
(
ψ+

1,tψ2,t

∣∣ρ1:t

)
E
(
ψ+

1,tψ
+
2,t

∣∣ρ1:t

) ] = E
(
ψ1,tψ2,t

∣∣ρ1:t

)
I2

Hence, Ωρ(0, t− 1) commutes with the matrix Tλ which is orthogonal (TλT
′

λ = I2),

Ωρ(0, t) = φ2Ωρ(0, t− 1) + ρtσκ,1σκ,2I2. (A.3)

Since Ωρ(0, 0) = ρ0σκ,1σκ,2I2 and given equation (A.3),

Ωρ(0, t) = (1− φ2)−1ρ̃tσκ,1σκ,2I2, (A.4)

with ρ̃t = (1− φ2)
∑t

i=0 φ
2iρt−i the exponential smoother of ρt (the parameter is equal to φ2).

From equations (A.2) and (A.4), we derive the cross-autocovariance Ωρ(τ , t) between bivariate

cycles ψ̄1,t and ψ̄2,t−τ at a lag τ > 0, conditional on ρ1:t = [ρ1, ..., ρt]′:

Ωρ(τ , t) = (1− φ2)−1φτ ρ̃t−τσκ,1σκ,2Tλτ , (A.5)

A.3 Auto-covariance matrix between business cycles

From (A.5), the cross-autocovariance γρ,ξ(τ , t) between business cycles y1,t and y2,t at a lag τ > 0,

conditional on ρ1:t and ξ1:n = [ξ1, ..., ξn]′, is given by

γρ,ξ(τ , t) = E

[[
1 0

]
ψ̄1,tψ̄

′

2,t−τ

[
cos ξ2,t−τ

sin ξ2,t−τ

]∣∣∣∣∣ρ1:t, ξ1:n

]

=
[

1 0
]
Ωρ(τ , t)

[
cos ξ2,t−τ

sin ξ2,t−τ

]
= (1− φ2)−1φτ ρ̃t−τσκ,1σκ,2 cos

[
λ(τ − ξ2,t−τ )

]
.

with E( ·|ρ1:t, ξ1:t) the “conditional on ρ1:t and ξ1:n” expectation.

By using similar arguments, it might be proved more generally that the autocovariance matrix

Γρ,ξ(τ , t) of [ψ1,t; cos(λξ2,t)ψ2,t + sin(λξ2,t−τ )ψ+
2,t]

′ at a lag τ ≥ 0, conditional on ρ1:t and ξ1:n, is

given by

Γρ,ξ(τ , t) = (1−φ2)−1φτ

[
σ2

κ,1 cos(λτ) ρ̃t−τσκ,1σκ,2 cos
[
λ(τ + ξ2,t)

]
ρ̃t−τσκ,1σκ,2 cos

[
λ(τ − ξ2,t−τ )

]
σ2

κ,2 cos(λτ)

]
;

at a lag τ < 0, it can also be shown that

Γρ,ξ(τ , t) = (1− φ2)−1φ−τ

[
σ2

κ,1 cos(λτ) ρ̃tσκ,1σκ,2 cos
[
λ(τ + ξ2,t)

]
ρ̃tσκ,1σκ,2 cos

[
λ(τ − ξ2,t−τ )

]
σ2

κ,2 cos(λτ)

]
.

At time t, if φ = 0, φ = 1, λ = 0, λ = π or ρ1:t = 0t, the autocovariance matrix Γρ,ξ(τ , t) does

not depend on ξ2,t and the phase-shift ξ2,t is not identifiable. Thus, the identification conditions

(φ > 0), (0 < λ < π) and (ρt > 0, ∀t) are assumed.
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B Iterative Kalman smoother (IKS)

The iterative Kalman smoother (IKS) is an iterative procedure, designed for estimating a linear

approximate of the SCCM model. The notations are defined in Section 2.4 and Section 2.5.

Initialisation k = 0

• Estimation of ψ̄c
t , ψ̄

∗
2,t, θ̂ξ

, θ̂a in the common factor Rünstler model, by applying the Kalman

and EM algorithms to the equation system (6), where transformed parameters θp have

been integrated. The phase-shift θξ and the weight a are also deduced from transformed

parameters: (ξ = θξ, a = θa)

• θ̂
(0)

ξ,t = θ̂ξ,θ̂
(0)

a,t = θ̂a.

• e(0) = 1.

Iteration k+1

• If the iteration error e(k) > 10−7, Kalman and EM algorithms (with diffuse initialisation)

are applied to models (B.1) and (B.2), otherwise the algorithm is stopped. First, a(k+1)
t is

estimated conditional to ξ̂
(k)

t :

y1,t = [1, 0]ψ̄c
t

y2,t = θ
(k+1)
a,t

[
cos θ̂

(k)

ξ,t , sin θ̂
(k)

ξ,t

]
ψ̄c

t + [1, 0]ψ̃
∗(k+1)

2,t

ψ̄
∗(k+1)
2,t = |θφ|√

1+θ2
φ

T 2π
2+|θλ|

ψ̄
∗(k+1)
2,t−1 + κ̃∗2,t

θ
(k+1)
a,t = θ

(k+1)
a,t−1 + γ2,t, θ

(k+1)
a,0 = θa,0

. (B.1)

with κc
t ∼ N(0, θκ,c), κ+c

t ∼ N(0, θκ,c), κ∗2,t ∼ N(0, θh), κ+∗
2,t ∼ N(0, θh), γ2,t ∼ N(0, θγ√

n
).

• Then, ξ(k+1)
t is estimated conditional to â(k+1)

t and ξ̂
(k)

t :

y1,t = [1, 0]ψ̄c
t

ỹ2,t = θ̂
(k+1)

a,t θ̂
(k+1)

ξ,t

[
− sin θ̂

(k)

ξ,t , cos θ̂
(k)

ξ,t

]
ψ̄1,t + [1, 0]ψ̃

∗∗(k+1)

2,t

ψ̄
∗∗(k+1)
2,t = |θφ|√

1+θ2
φ

T 2π
2+|θλ|

ψ̄
∗∗(k+1)
2,t−1 + κ̃∗2,t

θ
(k+1)
ξ,t = θ

(k+1)
ξ,t−1 + 2π

2+|θλ|δ2,t, θ
(k+1)
ξ,0 = θξ,0

, (B.2)

with κc
t ∼ N(0, θκ,c), κ+c

t ∼ N(0, θκ,c), κ∗2,t ∼ N(0, θh), κ+∗
2,t ∼ N(0, θh), δ2,t ∼ N(0, 2+|θλ|

2π
θδ√

n
),

ψ̃
∗∗(k+1)

2,t the specific cycle of the linearised model (B.2) at the iteration (k + 1) and ỹ2,y the

adjusted series defined by:

ỹ2,t = y2,t − θ̂
(k+1)

a,t

[
cos θ̂

(k)

ξ,t , sin θ̂
(k)

ξ,t

]
ψ̄1,t + θ̂

(k+1)

a,t θ̂
(k)

ξ,t

[
− sin θ̂

(k)

ξ,t , cos θ̂
(k)

ξ,t

]
ψ̄1,t.

• Finally, the iteration error e(k+1) is computed:

e(k+1) = 0.5×

√√√√ 1
n

n∑
t=0

(
θ̂
(k+1)

a,t −θ̂
(k)

a,t

)2

+ 0.5×

√√√√ 1
n

n∑
t=0

(
θ̂
(k+1)

ξ,t −θ̂
(k)

ξ,t

)2

.
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