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Direct multi-step estimation and forecasting

Abstract

This paper surveys the literature on multi-step forecasting when the model or the estimation method

focuses directly on the link between the forecast origin and the horizon of interest. Among diverse

contributions, we show how the current consensual concepts have emerged. We present an exhaus-

tive review of the existing results, including a conclusive review of the circumstances favourable to

direct multi-step forecasting, namely different forms of non-stationarity. We also provide a unifying

framework which allows us to analyse the sources of forecast errors and hence of accuracy improve-

ments from direct over iterated multi-step forecasting.

Keywords: Multi-step Forecasting, Direct estimation, Varying Horizon, Structural breaks, Non-

stationarity.

Résumé

Cet article constitue un exposé des développements concernant la prévision à horizon variable

lorsque les modèles ou méthodes d’estimation visent directement le lien entre l’origine de la prévision

et l’horizon considéré. Au sein des diverses contributions, nous montrons comment les concepts qui

font actuellement consensus ont progressivement émergé. Nous présentons de manière exhaustive

les résultats existants, en particulier concernant les circonstances favorables à l’usage de la méthode

d’estimation directe, à savoir différentes formes de non-stationnarité. Nous fournissons également

un cadre unificateur qui permet d’analyser les différentes sources d’erreur de prévision, et ainsi

d’amélioration de la précision de la prévision grâce à la méthode directe (par opposition à l’itération

de prévisions à horizon unitaire).

Mots-Clef : Prévision à horizon variable, Estimation directe, Multi-étapes, Chocs structurels, Non-

stationnarité.
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1 Introduction

Economic forecasting is a task distinct from that of modelling because it has been shown (see inter

alia Clements and Hendry, 1999, Allen and Fildes, 2001 and Fildes and Stekler, 2002) that causal

models do not necessarily forecast better that non-causal alternatives. Rather, causal models of-

ten suffer forecast failure and many adjustment techniques have been developed such as intercept

corrections (see e.g. Clements and Hendry, 1998a). Other routes include the use of non-congruent

models or ‘naive’ formulations—such as constant growth or random walk hypotheses—which often

enhance accuracy owing to their robustness to instability (structural breaks, regime change, eco-

nomic policy shifts, technological discoveries...) which generate misspecification in the economic

models.

When a modeler wishes to produce forecasts at several horizons, an intuitively appealing idea,

‘direct multi-step estimation’ (DMS), consists in matching model design with the criterion used

for its evaluation. Hence, DMS directly minimizes the desired multi-step function of the in-sample

errors and offers a potential way to avoid some of the aforementioned difficulties. By contrast,

the standard procedure uses one-step estimation—via minimizing the squares of the in-sample

one-step ahead residuals—from which multi-step forecasts are obtained by ‘iterated multi-step’

(denoted here by IMS). One intuition behind DMS is that a model which is misspecified for the

data generating process (DGP) need not be a satisfactory forecasting device. However, misspec-

ification is insufficient: predictors like constant growth are misspecified but robust. Here, the

desired robustness is to misspecification of the model dynamics or vis-à-vis unnoticed parameter

change. Among model misspecifications which might sustain DMS, unnoticed unit roots stand

out; neglected serial correlation of the disturbances also provide a rationale at short horizons. In

stationary processes, DMS could enhance forecast accuracy, but gains fade rapidly as the horizon

increase.

The idea of multi-step estimation has a long history and its developments have followed many

paths. Two main DMS approaches have been studied: first, for the parametric technique, the same

model parameters are estimated via minimizing distinct horizon-dependent criteria; the techniques

used in this case are most often nonlinear, and the model may or not be assumed misspecified. By

contrast, non-parametric DMS focuses on the parameters of a different—misspecified beyond the
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first step—model at each horizon.

The purpose of this article is to review the main contributions to the multi-step forecasting

literature and to show how they arose in order to provide a unifying treatment of the many

distinct existing results. We first need to explain what we mean by direct multi-step forecasting as

its definition has emerged only progressively and we think preferable not to define it at this stage

but after reviewing the various contributions: this concept has historically served as an umbrella

for different approaches and only one has proved useful in forecasting. Let us only clarify for

now that the traditional estimation method consists in estimating, for a vector variable xt, the

equation relating it to its past and, potentially, to additional variables. If we denote by Ft, the

sigma-field representing the information available at time t, the traditional method seeks to model

and estimate how xt is generated given Ft−1, or xt|Ft−1, so as to produce an equation such that:

xt = f̂ (Ft−1) , for t ≤ T. (1)

From a date T , when FT is available, it is therefore possible, using the estimated (1), to generate

a forecast for T + 1, namely

x̂T+1|T = f̂ (FT ) ,

assuming that the intertemporal link between xt and Ft−1 will remain valid in the future. When

FT is generated only by {xt}t≤T , the same assumption about xT+h and FT+h−1, for h > 1, leads

to replacing FT+1 by F̂T+1 which we regard as pseudo information relating to
{
...,xT , x̂T+1|T

}
where x̂T+1|T is assumed to be authentic information (in reality F̂T+1 = FT ), so that we produce:

x̂T+2|T = f̂
(
F̂T+1

)
,

and so on, for higher forecast horizons. We define the resulting forecasts as iterated multi-step or

IMS.

By contrast, an alternative method consists in directly estimating the relationship of interest

at the hth horizon, namely xt|Ft−h, so that a DMS forecast is generated by

x̃T+h|T = k̃h (FT ) .

Care must be paid to the terms used: the one-step (1S) parameter estimates (which coincide for

both IMS and DMS at h = 1) are those obtained for f̂ (·), they imply some IMS counterparts by
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combination and powering-up. By contrast the DMS parameters are directly estimated. Thus, the

main distinction between the two methods is that IMS forecasting necessitates only one estimation

procedure but the estimates are modified for each horizon, whereas DMS needs re-estimation for

each h, but then such estimates are directly usable. We note, and will see below, that some

authors define DMS as estimation of the one-step parameters using a non-linear criterion based

on xt|Ft−h; this, seemingly, uncouples estimation and forecasting and does not correspond to our

choice of definition, although both are related, which will lead us to consider this case too. We

provide below the seven key steps of the progressive research which explain what the state of

knowledge now is, each literature strain provides the opportunity for a discussion.

We organise our analysis as follows: section 2 explains the first instances when it was suggested

to resort to some dynamic, rather than one-step, estimation. The next section makes explicit

the results regarding the inefficiency from using a multi-step procedure to estimate the one-step

ahead parameters of a well-specified model (which we call parametric DMS) and we show the need

for model misspecification in §4. We turn to non-parametric estimation in section 6. The main

theoretical results regarding forecasting are presented in section 5, robustness towards breaks is

analysed in §7 and section 8 concludes the review of literature. After reviewing all the progress

made in the literature and the many aspects covered, we finally present our analysis of the general

framework appropriate for the analysis of direct multi-step estimation and forecasting in section 9

and show that it explains how to interpret the results found in existing literature.

2 Early suggestions: estimate the dynamic ‘solution path’.

The first instance when some dynamic estimation was suggested is found in Cox (1961) who

compares the mean-square forecast errors from an Exponentially Weighted Moving Average and

an AR(1) model with an intercept when the true data generating process is either AR or ARMA

with an intercept. He shows that, if the mean of the process to be forecast is allowed to shift, the

parameters of the prediction model should depend on the forecasting horizon so that robustness can

be achieved. He suggests combining the EWMA and the AR forecasting techniques with weights

which vary with the horizon.

At the turn of the 1970s, several authors start focusing on the difficulties in estimating dynamic

5



Direct multi-step estimation and forecasting

models. Their concern is that of predetermined variables and their interest lies in the design of

estimation techniques which take full advantage of the dynamic structure of the series.

Klein (1971) suggests a multi-step estimator which minimizes the ‘solution path’ as mentioned

in Haavelmo (1940). His idea is that in general if the data generating process follows an AR(1)

(which can readily be extended to include more lags or exogenous variables):

yt = αyt−1 + εt, for t = 1, ..., T, and |α| < 1,

and it is wished to obtain forecasts of yT+h = αhyT +
∑h−1
i=0 α

iεT+h−i, for h = 1, ...,H, then

least-squares estimation of the model leads to minimizing the criterion function:

H∑
h=1

T−h∑
t=1

(
h−1∑
i=0

αiεt+h−i

)2

=
H∑
h=1

T−h∑
t=1

(
yt+h − αhyt

)2
,

with respect to the coefficient α. In a simulation experiment, the author lets several parameters

vary and his findings are that (i) multi-step methods seem to perform better in smaller samples

(here 50 vs. 400), (ii) adding a trendless exogenous variable seems to help DMS, but a trending

variable does not, and (iii) the initial observation does not affect the previous results. In applying

this dynamic estimation method to the Wharton model, he finds that he can reduce the mean

average prediction error (MAPE) from 6.29% to 5.33% in 2-step ahead out-of-sample forecasting,

when comparing it to an IV estimation with principal components.

Hartley (1972) studies the properties of the dynamic least squares estimator (DLS for him)

suggested by Klein (1971) in the univariate AR(1) case. He shows that the new estimator is more

robust to residual autocorrelation than OLS.

Assuming that the process can be written, for t = 1, ..., T , as

yt = αyt−1 + εt, (2)

εt = ρεt−1 + ut, (3)

where y0 is fixed, ε0 = 0, {ut} is an independently and identically distributed (i.i.d.) process whose

elements have zero mean, variance σ2 and finite third and fourth moments, |α| < 1 and |ρ| < 1,

Hartley shows that if the dynamic solution path

yt = αty0 +
t∑
i=1

αt−iεi,
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is estimated by generalised least squares (GLS), then it is the same as OLS when ρ = 0. Denoting

the OLS and DLS estimators of α by respectively α̂ and α̃, then

α̂− α →
T→∞

ρ
(
1− α2

)
1 + αρ

,

but α̃ does not converge unless it is assumed that y0 = Op
(
T k
)
, for k > 0, under which circum-

stance, if ρ = 0:

α̃− α →
T→∞

N

[
0,
(
1− α2

) 1 + 3α2 + α4

(1 + α2)2
σ2

y2
0

]
,

so that the asymptotic variance of the DLS estimator is of order 1/T 2k. The author shows that

when ρ 6= 0 and y0 = Op
(
T k
)
, there exists a function f (·, ·) such that

lim
T→∞

Var [α̃− α] = f (α, ρ)
σ2

y2
0

.

Thus the DLS estimator is consistent, whereas OLS is not. Hartley notes that the assumption

about the initial observation is satisfied even with very low k. Yet the variance cannot be made

arbitrarily small since σ should then increase with y0. He also notices that if the errors follow an

MA(1) rather than an AR(1), then the DLS estimator is the Maximum Likelihood Estimator.

Johnston, Klein, and Shinjo (1974) notice that dynamic models which incorporate lagged val-

ues of the endogenous variable may lead to a contradiction between the assumptions made for

estimation and for forecasting. Indeed, it is common practice since the work by Mann and Wald

to consider that the lags of the endogenous variable can be asymptotically treated as ‘exogenous’,

or predetermined. However, when formulating a forecast at several periods in the future, the in-

termediate lags—between the forecast origin and the period of the forecast—can no longer be seen

to be predetermined and this aspect ought to be taken into consideration. They build their work

on the previous results by Haavelmo (1944) who shows that for the case of a stationary AR(1)

process with no drift:

yt = αyt−1 + et, (4)

the optimal—in the sense of minimizing a quadratic loss function in eT+1 and eT+2—prediction

formulae for T + 1 and T + 2 from an end-of-sample forecast origin yT are given by:

yT+1 = αyT ,

yT+2 = α2yT .
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The significant aspect is that the maximum likelihood estimate of α is that of α2 too.

Johnston, Klein, and Shinjo compare several forecasting methods for the AR(1) with different

parameter values and apply their techniques to the Wharton model. Their idea is to compute

estimators and resulting forecasts which incorporate the dynamic structure of the data generating

process. The hypothesis is that ‘systems using up to pth order generated lag values as instruments

or regressors will perform best in p period point prediction’. In general, the DLS estimator for a

model such as

A (L)yt = εt,

where A (L) is a matrix polynomial and L the lag operator, is that which minimizes the criterion:

tr
∑T

t=1

(
A (L)−1

εt

)(
A (L)−1

εt

)′
.

In the univariate AR(1) case from (4), this is:

α̃ = argmin
α

∑T

t=1

(
yt − y0α

t
)2
. (5)

The procedure used by the authors for actual minimization is a grid search. The results of Monte

Carlo simulations with fixed or stochastic initial values and various stationary values of α show that

the variance of the DLS estimator is higher than that of OLS when the initial value is stochastic,

but lower for a fixed initial value. In terms of mean-square forecast error (MSFE), their results are

that for small samples (either 20 or 50 observations and the forecast horizons, respectively, of 5 or

10 periods) DLS outperforms OLS when the initial value is fixed, but when the latter is stochastic,

the forecast loss is lower for DLS only for very small samples.

The authors then use Two-Stage Least Squares estimators for the Wharton model. They match

the values of the lag used for the endogenous variable as an instrument and the horizon at which

it is desired to forecast. Unfortunately, their results for out-of-sample prediction are somewhat

inconclusive. Some gains are obtained at short horizons and seem to improve with the lead in the

forecast for Personal Income and Total Consumption but not for the G.N.P. deflator, Investment

in Non-farm inventories and Unemployment rate. The G.N.P. deflator is the only variable for

which the within-sample residual standard error and the post-sample root-MSFE are of the same

magnitude. The latter is much larger than the former as regards the other variables.
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Discussion

The concept of solution path is the first attempt to provide an estimation method which embodies

the dynamics of the process. Unfortunately, its dependence on the initial observation makes it

impractical since it can be strongly contaminated by measurement errors and it asymptotically

relies on the artificial assumption that the initial observation increases with the sample size. Thus

this methodology is of little use for both stationary and integrated processes. Yet it paves the way

to multi-step estimation where it is not the same initial observation which is used, but the same

lag; thus leading, instead of (5), to

α̃h = argmin
αh

∑T

t=h

(
yt − yt−hα

h
)2
.

And, now, there is no longer any need for an exploding initial value. This augurs all the better for

the use of DMS since the first simulation results by Johnston, Klein, and Shinjo seem to confirm

that such methods fare well in small samples, where the initial value need not be of magnitude

different from the rest of the observations.

3 Inefficiency of DMS estimation in a well-specified model.

The first authors who analyse multi-step estimation techniques compare their asymptotic properties

to those of other well established methods when the model is well-specified for the stationary DGP.

Johnston (1974) analyses the forecasting properties of the multi-step estimator (Dynamic Es-

timator for him) suggested by Johnston, Klein, and Shinjo (1974) and compares them to those of

a one-step ahead estimator. His framework is that of a well specified dynamic vector model with

exogenous variables and mean zero errors:

yt = ztθ + εt, (6)

where zt = (yt,yt−1,xt) and θ′ = (A′
0,A

′
1,B

′), with zero diagonal entries for A0. For an estimate

θ̂ of θ, ŷT+h,h is the forecast of yT+h conditional on {yt}t≤T , {xt}t≤T+h and θ̂, as obtained by

some least-squares technique. The user’s loss function is assumed to be quadratic and given by:

L
(
T, h, h

)
=
∑h

h=h
wh (yT+h − ŷT+h,h)Q (yT+h − ŷT+h,h)

′
, (7)
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where Q is a positive definite matrix weighting the importance of forecast errors across equations

and the set of weights, {wh}, expresses the relative importance of the forecasting horizons (∀h

wh ≥ 0). The direct multi-step estimator is then defined as:

θ̂DMS = argmin
θ̂


T−h∑
t=1

L
(
t, h, h

) . (8)

It corresponds to the DLS, whose distribution was derived by Hartley (1972) in the univariate

case. And when the model is well-specified—i.e. ρ = 0 in (3)—this estimator is asymptotically less

efficient than the one-step OLS, thus being consistent with the claim in Haavelmo (1944) that, when

the error loss function is quadratic, the rankings of the estimators in prediction and estimation

efficiency match one another. The author’s Ph.D. thesis showed that, asymptotically, the ‘optimal’

estimator is invariant to the choice of—quadratic—prediction error loss function. Johnston sustains

that, in practice, multi-step estimation can be justified if it is more efficient than an alternative

computationally equivalent estimator. Yet, as the paper proves, the asymptotically most efficient—

in terms of minimum variance—estimator from (8) is given by h = h = 1 (the author only considers

the case where h = h, Q = I, wh = 1 ∀h, and where θ̂DMS is obtained by iterated minimization

of (8), given an initial estimate θ̂0 which provides ẑt
(
θ̂0

)
, until convergence). The main result is

that:

Σh − Σh−1 ≥ 0,

where Σh is the asymptotic variance of the multi-step estimator (scaled by
√
T ) for h = h. Thus

the one-step OLS estimator has minimum asymptotic variance and is hence efficient. The author

mentions some unpublished simulation results which confirm this finding even in small samples.

He notes, however, that small sample biases should be taken into account since they will make the

estimator variance and MSFE to differ.

Kabaila (1981) is interested in comparing the asymptotic efficiency of the IMS and DMS esti-

mators in general non-linear processes. His assumptions are that the process under consideration

{yt} is strictly stationary and generated by:

yt = f (yt−1, yt−2, ...; θ0) + εt,

where the process {εt} is i.i.d. and its elements have zero expectation and variance σ2, θ0 ∈ Θ ⊂ Rp,

and yt is a measurable function of {εt}. The dots in f(·) indicate that the initial values can be of
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any form and number. Obviously, f (yt−1, ...; θ0) = E [yt|yt−1, ...; θ0] . Define, similarly,

gk (yt−k, yt−k−1, ...; θ0) = E [yt|yt−k, ...; θ0] , for k > 1.

The function hk,t (·) is defined as that obtained by backward substitution of the f (·) and εt−j for

j = 0, ..., k − 1, such that:

gk (yt−k, yt−k−1, ...; θ0) = E [hk,t (θ0) |yt−k, ...] .

Kabaila makes an additional assumption, namely that for all θ ∈ Θ:

hk,t (θ) =
k−1∑
i=1

εt−iUt,i (θ) + Vt−k (θ) ,

where Ut,i (θ) (i > k−1) is a function of θ, the εj and ym for j ≤ t− i−1 and m ≤ t−k; Ut,k−1 (θ)

and Vt−k (θ) are functions of yt−k, yt−k−1, ...

Let θ̂T and θ̃k,T denote minimizers—with respect to θ—of some approximations to the in-

sample (for a sample of size T ) sum of the squared residuals, respectively yt − f (yt−1, yt−2...; θ0)

and yt − gk (yt−k, yt−k−1, ...; θ0). By approximation, it is meant that the initial values y−1, ... may

not be known and this is reflected in the objective function.

Provided that the asymptotic variances of the estimators (which exist) are nonsingular, Kabaila

proves that the 1S estimator is efficient, as an estimator of θ.

Discussion

These authors are interested in comparing some parameter estimators which account for some

of the dynamics of the process. This is one of the two strains of multi-step estimation and,

unfortunately, brings no benefits. Here the same parameter is to be estimated by either one-step

or h-step methods. It is simply the objective functions that differ, in so far as the h-step criterion

is a non-linear composition of the one-step. Indeed in both cases, the h-step fitted values—ŷT+h,h

or hk,t (θ)—are computed using the same model as that for 1S. Under these assumptions, the

authors show that one-step estimation is asymptotically more efficient than this type of DMS. The

two contributions are thus essential, since they show that for DMS to provide any gains, one of

the four following assumptions must be made: (i) the model is misspecified, (ii) different models

are used for 1S and DMS, (iii) it is the implied (powered-up) multi-step parameters which are of
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interest, not the one-step estimated by a multi-step criterion or (iv) the gains are to be found in

small samples. These assumptions are studied by other authors as we see below and will lead to

the preferred approach to direct multi-step estimation which no longer aims to estimate the 1S

model via multi-step techniques.

4 Parametric DMS estimation under misspecification.

The first contributions to the parametric approach to multi-step forecasting suggest some forms of

model misspecification which could provide a sufficient rationale for the use of DMS. By parametric,

it is meant that the one-step ahead parameters are the object of interest but that they are estimated

by minimizing functions of the multi-step errors.

Stoica and Nehorai (1989) extend the concept of direct multi-step estimation which was sug-

gested by Findley to ARMA models:

A (L) yt = C (L) εt,

where A (L) =
∑p
i=0 aiL

i and C (L) =
∑p
i=0 ciL

i. The forecasts ŷT+h,h are computed as the

conditional expectation of yT+h given yT for the model with parameter θ = (a0, ..., ap, c0, ..., cp).

Define Bh (L) =
∑h−1
i=0 biL

i and Dh (L) =
∑p
i=0 diL

i, such that:

C (L) = A (L)Bh (L) + LhDh (L) ,

so that

yt =
(
Bh (L) +

Dh (L)
A (L)

Lh
)
εt.

The h–step ahead forecast error is thus given by

eT+h,h = yT+h − ŷT+h,h = Bh (L) εT+h.

The authors define the multi-step parameter estimator as that which minimizes a function of the

in-sample squared multi-step forecast errors,

θ̂h = argmin
θ̃h∈Θ

F (V1,T , ..., Vh,T ) ,

12



Direct multi-step estimation and forecasting

where Vk,T = T−1
∑T−k
t=1 e2t+k,k, for k = 1, ..., h. They provide various algorithms to obtain the

non-linear estimates.

Under the assumption that the DGP follows an ARMA(p, p) , Stoica and Nehorai present several

results, namely that (i) the one-step estimator θ̂1 for F (u) = u, is consistent and asymptotically

efficient among the class of estimators whose covariance matrices depend only on the second-order

properties of the data; and (ii) that the only stationary point of V1,∞ is θ∗, the true parameter value.

By contrast, they note that the multi-step criterion may have several minima. The consequence

is that for there being any gain from using multi-step estimation, the main assumptions have to

be modified. Thus, if it is assumed that the true DGP is not known, it is still possible under weak

conditions to show that θ̂h converges to some value which leads asymptotically to the ‘best’—in

the sense of minimizing F (V1,∞, ..., Vh,∞)—forecasts. The use of DMS can therefore be justified in

practice.

The authors conduct a Monte Carlo experiment in which they analyse the forecasts obtained

for four models:

ARMA (3, 3) :

 yt − 0.95yt−1 + 0.81yt−2 − 0.7695yt−3

= εt − 0.97εt−1 − 0.775εt−2 + 0.6732εt−3;

BLAR (1) : yt = 0.4yt−1 + εt + 0.8yt−1εt−1;

TMA (3) : yt =

 εt + 0.15εt−1, if εt < 0,

εt − 0.97εt−1 + 0.81εt−2 − 0.7857εt−3, if εt ≥ 0;

ARMA (2, 2) : yt − 0.98yt−2 = εt − 0.87εt−1 − 0.775εt−2.

They estimate the models over samples of size 200 and forecast over the horizons h = 1, .., 4.

The forecasting models are either an AR(4) or an AR(8) , except for the ARMA(2, 2) model for

which they either try an AR(1) or an AR(6). The multi-step estimators are computed for the four

horizons at once. Their results are that the first three model provide no rationale for the use of

multi-step estimation, other than the fact that the forecast accuracy is essentially the same for

IMS and DMS. By contrast the fourth model forecast by an AR(1) does indeed provide a gain for

DMS. It must be noted that the gain is for horizons 2 and 4. The slope estimates are 0.26 for IMS

and 0.30 for DMS. The authors conclude that under-parameterization seems to benefit DMS.
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Discussion

Although Stoica and Nehorai do not make explicit the difference between the model parameters

and their powered-up multi-step counterparts, they show the importance of the hypothesis of

model misspecification as a justification for the use of DMS. Here, it is the same model which is

used at all forecast horizons, but the estimation method matches the desired outcome. In their

simulations, the authors find that an ARMA(2, 2) estimated by an AR(1) model can lead to more

accurate forecasts when using DMS. Their conclusion relating to under-parameterization mirrors

that of Bhansali (1999); it is surprising that the very specific form of DGP they use should not

strike them: it exhibits a root close to unity. It is thus possible that non-stationarity may appear

as a feature benefitting DMS.

5 Efficiency in matching criteria for estimation and forecast

evaluation.

Analyzing the ARIMA time series reported in Madrikakis (1982), Weiss and Andersen (1984) com-

pare the forecasting properties of various estimation methods when the forecast accuracy criterion

varies. In particular, they compare the one-step and multi-step ahead forecasts. They find that

when a one-step ahead forecast accuracy loss function is used, it is preferable to use one-step

ahead estimation (and then OLS, Least-Absolute Deviation seem similar for either MSFE or Mean

Absolute Error (MAE) criteria). Similarly, when the forecast accuracy is measured by the absolute

percentage trace of a matrix of the forecast errors at several horizons, the best amongst the four

estimation methods which they use (the multi-step trace, one-step ahead OLS, one-step MAE and

one-step Mean Absolute Percentage Error) is the multi-step trace. They, thus, find some significant

improvement from matching estimation and forecasting horizons.

Weiss (1991) builds upon the earlier work on multi-step estimation for forecasting and derives

conditions under which this technique is asymptotically ‘optimal’, in a sense that he defines. He

builds on the work by Johnston, where, in model (6), he allows for more lags of the endogenous
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variable. He also defines the error terms as a function of the parameter θ:

εt = εt (θ) = yt − ztθ,

where xt, in zt = (yt,yt−1, ...,yt−p,xt), is a vector of variables strongly exogenous with respect to

θ (see Engle, Hendry, and Richard, 1983). The model is not assumed to coincide with the DGP,

and any of the following may be present: irrelevant regressors, omitted variables, serial correlation,

misspecified functional form, etc. The author works under fairly mild assumptions allowing for a

uniform Law of Large Numbers (LLN) and a Central Limit Theorem (CLT). The forecasts are given,

as in Johnston (1974), as the conditional expectation computed by assuming that the model is well

specified and, similarly, the forecast evaluation criterion is E
[
L
(
T, 1, h

)]
, where the expectation

is taken with respect to the true process, Q = I, and L (·, ·, ·) is defined in (7). θ̂DMS is defined

as in (8), where the parameter space, Θ, is assumed compact. The inclusion of lags of yt in

zt implies that θ̂DMS is not the simple weighted least-squares estimator. Weiss assumes that a

uniform LLN will hold for GT,h (θ) =
∑T−h
t=1 L

(
t, 1, h

)
and that its limit coincides with that of

the forecast evaluation criterion, denoted GT,h (θ) = E
[
L
(
T, 1, h

)]
. The author then proves that,

given a minimizer of the continuous function GT,h (θ) on Θ, which exists on a compact set and is

denoted by θ̃,

GT,h

(
θ̂DMS

)
−GT,h

(
θ̃
)

a.s.→
T→∞

0.

If the sequence of
{
θ̃
}∞
T=1

is identifiably unique,1 then θ̂DMS is strongly consistent for θ̃, i.e.

θ̂DMS − θ̃
a.s.→
T→∞

0.

and there exists a scaling matrix Kh such that:

T 1/2Kh

(
θ̂DMS − θ̃

)
L→

T→∞
N (0, I) .

Thus the multi-step estimator is asymptotically optimal, in the sense that it minimizes the desired

criterion function. In small samples, two opposite effects are present: the variance of the multi-step

estimator should be larger than that of the one–step ahead, but the bias should be smaller. A

1i.e. if and only if ∀η > 0, lim inf
T→∞

{
min

θ∈NC
T

(η)

[
GT,h (θ) − GT,h

(
θ̃
)]}

> 0, where NT (η) is a neighbourhood of

θ̃ of radius η such that its complement NC
T (η) is a compact set of Θ.
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Monte Carlo simulation thus attempts to exemplify the results for a sample of 100 observations

with random initial observations. The data generating process is univariate autoregressive with

distributed lags (ADL):

yt = α0 + β1yt−1 + β2yt−2 + γ0zt + γ1zt−1 + εt,

where zt follows a stationary AR(1): zt = ψzt−1 + ut, with |ψ| < 1. The errors—{εt} and {ut}—

are i.i.d. standard normal and independent. The intercept α0 is set to zero and estimated in all

cases. The cases studied are either a well-specified ADL(2, 1) model or one with some degree of

misspecification: omitted regressors yt−2, zt−1, or {zt, zt−1}; or wrong functional form (estimation

of the log of the data for which the intercept is non-zero). The only cases that provide a rationale

for using the multi-step estimator are those when either β1 = 1 and β2 is close to zero (and not

estimated) and when zt−1 is omitted as a regressor. Thus it seems that DMS performs better when

the DGP is better modelled as a random walk than as a stationary AR(2) and when some residual

autocorrelation is omitted.

Weiss (1996) analyses the forecasting properties of models which are estimated using the cost

function used also for the appraisal of the forecast. The main idea is that when this criterion is

quadratic, then the optimal forecast is the expectation, conditional on the information set. But

this result is only valid as long as this loss function is also used for the evaluation of the forecast.

Granger (1969) had considered predicting several steps into the future and recommended some

techniques. For instance, letting CF (·) denote the forecast evaluation cost function, if it is desired

to predict yt+h given {yi}i≤t , the forecaster could minimize the in-sample bias term from a linear

predictor:

min
a,bi

∑
t

CF

yt+h − m∑
j=0

bjyt−j − a

 .

Alternatively, if minimization is difficult to carry out, it would be sensible to first estimate

(b1, ..., bm), by OLS, forming ỹt+h = yt+h −
∑m
j=0 b̂jyt−j , and then to minimize

∑
t CF (ỹt+h − a)

with respect to a. Such methods were proposed because Granger thought that it should be asymp-

totically sensible to use the same criteria for both estimation and evaluation. In his article, Weiss

focuses on one-step ahead forecasts and derives the optimal predictors; yet the Monte Carlo that

he provides do not show a substantial improvement.
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Discussion

One of the important contributions of Weiss (1991) is that his definition of optimality is not that

the estimator should have the lowest possible asymptotic variance but that it achieves the lowest

in-sample (multi-step) MSFE. This shift of focus is crucial to the appraisal of DMS methods and

it seems natural to evaluate a method by assessing how well it achieves the aim for which it is

designed. His simulations point to the fact that for DMS to perform better than IMS, the series

must be non-stationary, either of stochastic—via unit roots—or of deterministic—since location

shifts imply residual autocorrelation—form.

6 Design of non-parametric DMS models.

This first strain of direct estimation focuses on fitting different models for forecasting at different

horizons. Research along these lines attempts to establish reasonable ‘good’ criteria for choosing the

order p of the ‘best’ AR(p), to use for forecasting. The ‘non-parametric’ terminology is explained

in Bhansali (1999).

Findley (1983) provides a theoretical rationale for adapting the forecasting models to the fore-

casting horizon and suggests one type of technique which he applies to some standard time series

from Box and Jenkins (1976). The author starts by considering the case when an AR(1) model is

used for prediction of a variable h steps ahead. Denoting by {ρk} the autocorrelation sequence of

the process {yt}, the parameter ψh which minimizes the MSFE

E
[
(yT+h − ŷT+h,h)

2
]
, (9)

where ŷT+h,h = ψhyT , is simply the autocorrelation ψh = ρh, in the stationary case. If {yt} does

indeed follow an AR(1), yt = φyt−1 + εt, where φ < 1, then, naturally, we need to choose ψh = φh

and φ = ρ1. If {yt} follows any other process but we still fit an AR(1) as above, in order to

minimize (9), we must set

φ = (ρh)
1/h

, if h is odd or ρh > 0,

φ = 0, if h is even and ρh < 0.

Thus the ‘optimal’ model depends on the desired lead in forecasting. Notice that if h is even and

ρh < 0, it is preferable not to fit an AR(1) model but rather to use ψh = ρh. It, therefore, seems
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that the formula most appropriate to multi-step forecasting cannot always be derived from an

ARMA model. The results would asymptotically be the same if the estimators were computed to

maximize the forecast log-likelihood. Findley remarks that when the forecast accuracy criterion

combines several horizons, the degree of complexity is much higher. In order to improve forecast

accuracy, it may seem desirable to use several lags of the variable. Findley suggests an h-step

Akaike Information Criterion (AICh) in order to select the order of the AR(p) to be fitted (for p

smaller than some pmax). The order p is thus given by:

p = argmin
1≤p≤pmax

{AICh (p)} ,

where:

AICh (p) = T0 log
[
2π.SSQ

(
φ̂1, ..., φ̂p

)
/T0

]
+ T0 + 2 (p+ 1) ,

T0 = T − pmax − h+ 1,

and
(
φ̂1, ..., φ̂p

)
is computed as the set of coefficients which minimizes the in-sample sum of the

squared h-step ahead residuals:

SSQ
(
φ1, ..., φp

)
=
∑T−h

t=pmax

(
yt+h −

∑p

k=1
φkyt−k+1

)2

.

The author applies his results to two standard time series: series C and E from Box and Jenkins

(1976), where autoregressive models are fitted using the AICh criterion. The results exhibit an

average gain for the proposed multi-step methods in terms of MSFE of about 4% for series C at

horizons 5 and 10, and respectively 2.6% and 10.6% for series E at horizons 5 and 10.

Liu (1996) suggests to modify the standard fitting criteria for the order of an autoregressive

process to allow for the inclusion of multi-step forecast errors. He proposes to partition the data

set into non-overlapping vectors of length h, where h is the maximum desired forecast horizon.

Estimating the resulting VAR by weighted least-squares is shown by the author to be leading

asymptotically to the same estimates as those of a univariate model, but at a loss of efficiency.

In a Monte Carlo simulation for samples of size 80 and 240, Liu compared the ratios of 2- and

4-step ahead root MSFEs. The results showed little improvement by using the multi-step methods,

whether the data were generated by either a zero-mean stationary AR(1) or an ARI(1, 1). The

author applies his methods to forecasting the quarterly U.S. (174 observations) and monthly Taiwan

(192 obs.) unemployment rates, the log of quarterly real U.S. G.N.P. (179 obs.) and the monthly
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U.S. consumer price index for food (241 obs). Several overlapping samples for each data set were

used where the estimation was conducted for fixed sample sizes of respectively 100, 120, 100, 160

observations. Three main results emerge: first, when the one-step method is preferred, the loss from

using a DMS method is low, except when the multi-step order is determined by a modified Fisher

Information Criterion for which the loss can be up to 12.5%; second the multivariate procedure

is always preferred for the trending variables in levels (the U.S. G.N.P. and food index), but

not necessarily in differences; and third the DMS method is preferred for the monthly Taiwan

unemployment rate but not for the quarterly U.S. For the latter result, the author suggests as an

explanation that monthly data exhibit more time dependence.

Bhansali (1999) surveys the developments in multi-step criteria for the design of forecasting

models. He first distinguishes two different approaches: a parametric and a non-parametric. In the

former, the modeler attempts to establish what the true data generating process is, and estimates

its k parameters via some multi-step technique (for instance by maximum likelihood); by contrast

a non-parametric procedure approximates the unknown DGP by some process whose number of

parameters is allowed to diverge, say k (T ) , where T is the sample size and k (T ) = o (T ). Assume

that a process {yt} is approximated or modelled as a linear function of k lags, so that at an end-

of-sample forecast origin T , it is wished to predict yT+h, where h ≥ 1. Write the resulting forecast

ỹT+h,h as

ỹT+h,h =
k∑
i=0

α̃h,iyT−i,

where the α̃h,i are estimated by regressing yt+h on (yt, ..., yt−k) from a hypothesized model (the

forecast generating process), for fixed h ≥ 1:

yT+h =
k∑
i=0

αh,iyT−i.

For notational simplicity, the dependence of the αh,i on k is omitted. Define the unconditional

mean square forecast error:

Ṽ DMS
h,k = E

[
(yT+h − ỹT+h,h)

2
]
.

Similarly, letting yT+1,1 =
∑k
i=0 α1,iyT−i and noting that

yT+2 = α1,0yT+1,1 + α1,1yT + α1,2yT−1 + ... =
k−1∑
i=0

(α1,0α1,i + α1,i+1) yT−i + α1,0α1,kyT−k,
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it is possible, by iterated substitution, to find a set of non-linear function βh,i of the set of {α1,i}

such that:

yT+h =
k∑
i=0

βh,iyT−i.

Denote by β̂h,i the function of the estimated α̃1,i so that ŷT+h,h =
∑k
i=0 β̂h,iyT−i. And then, the

IMS MSFE is defined as:

V̂ IMS
h,k = E

[
(yT+h − ŷT+h,h)

2
]
.

Note that {yt} can expressed as an autoregressive process of order p according to Wiener–Kolmogorov’s

theorem, where p can be infinite. Then, if k ≥ p, the theoretical (for known parameters) MSFEs co-

incide for DMS (V DMS
h,k ) and IMS (V IMS

h,k ); but if k < p, the latter is larger than the former, which in

turn is larger than the ‘true’ MSFE from the correct—potentially infinitely parameterized—model

(see Bhansali, 1996). Define γi as the ith autocorrelation of {yt} for i ≥ 1 and γ0 its variance (in

stationary processes), then using an AR(1) as a forecasting model:

V IMS
2,1 /V DMS

2,1 = 1 +

[
γ2 − (γ1)

2
]2

1− (γ2)
2 ≥ 1,

where the equality arises when the model is well specified. Similarly it can be shown that if the

process follows an MA(1) with parameter θ, V IMS
2,1 /V DMS

2,1 = 1 +
(

θ

1 + θ2

)4

> 1.

Bhansali recalls the main asymptotic findings. For a well specified model, the 1S estimation

procedure is asymptotically equivalent to maximum likelihood and in the case of Gaussian pro-

cesses, achieves the Cramér–Rao bound; yet this is not the case when k 6= p. By contrast, DMS is

asymptotically inefficient for a well-specified model. However, if k (T ) → ∞, the distributions of

the DMS and IMS estimators coincide for T →∞, under some regularity conditions (see Bhansali,

1993 when k (T ) = o
(
T 1/3

)
). In analyzing the ARMA(1, 1) model:

yt − ρyt−1 = εt − θεt−1,

Bhansali notes that the two-step ahead forecast is given by:

yt+2 = −ρ (θ − ρ)
∞∑
i=1

θiyt−i = τ (1− θL)−1
yt, (10)

so that he recommends to minimize the in-sample sum of squared forecast errors:∑(
yt+2 − τ (1− θL)−1

yt

)2

,
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for (τ , θ) rather than for the original parameters (ρ, θ) since it is the multi-step parameters which

present an interest. Another justification is given by Stoica and Soderstrom (1984) who show that

the parameter estimates
(
τ̂ , θ̂
)

are unique whereas
(
ρ̂, θ̂
)

may not be so. We therefore call the

model (10), with parameters (τ , θ), the forecast generating process or FGP.

When the process to forecast or the model used is non-stationary—like the structural time

series in Harvey (1993)—Haywood and Tunnicliffe-Wilson (1997) extend the work by Tiao and Xu

(1993) to direct multi-step estimation of spectral densities. Bhansali reviews the different criteria

which can be used for deciding on the lag length k to be used for forecasting and notes that some

asymptotic efficiency can be shown for the MSFE obtained by DMS when k is treated as a random

variable function of a modified AIC. Finally, the author concludes that there exists a rationale for

DMS when the model is under-parameterized for the DGP or when the latter is complex or belongs

to a class admitting an infinite number of parameters. He remarks also that even if a model is

fitted to the data and seems to pass the traditional diagnostic tests, there might be a DMS forecast

generating process which, because it explicitly allows for moving average errors, improves and

robustifies the forecasting performances.

Schorfheide (2003) extends and confirms these results by presenting the case of local misspeci-

fication, whereby the disturbances exhibit serial correlation that asymptotically vanish.

Bhansali (2002) applies DMS estimation to a Monte Carlo experiment of seasonally adjusted

autoregressive AR(9) time series estimated over a sample of 99 observations. The FGP was selected

using the criterion in Shibata (1980), but this often led to selecting a model of order 0. The author

concludes that his simulation does not seem to advocate the use of direct estimation and assumes

that removing the seasonality may have damped the serial dependence of the process, or that the

sample used is too small, or finally that this result may simply depend on the specific series used

in the simulation.

More recently Ing (2003) has shown, when estimating a stationary AR(p) process via a mis-

specified AR(k) model, and when, contrary to the assumption in Bhansali (1996) of independence

between the estimation sample and the realizations to forecast, that if k ≥ p then IMS is asymp-

totically more efficient than DMS (in terms of MSFE) and for both methods a lower k is more

efficient as long as it is not lower than p. By contrast, Ing showed that when k < p, for given h
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and k :

lim
T→∞

(MSFEIMS −MSFEDMS) > 0.

Non parametric direct multi-step estimation was also the focus of Clements and Hendry (1996) and

Chevillon and Hendry (2005). But these authors analyse estimation for forecasting rather than

the design of the DMS FGP. They shed light on the dynamic properties leading direct estimation

to improve accuracy and hence we present their contributions in section 8 where we review the

features advocating the use of DMS.

Discussion

There is an extended literature on non-parametric DMS where the authors focus particularly on

designing information criteria and on estimating long-memory time series. Results concur to show

that these methods need reasonably large samples and strong time dependence, hence a recent

focus of researchers on forecasting fractionally integrated time series. Ing (2003) provides an

analytical justification for these asymptotic results. The multivariate framework in Liu (1996) has

the disadvantage that it partitions the set of observations in non-overlapping subsets and thus

loses a lot of information. It therefore cannot be used when only one forecast horizon matters, and

it is not sure that estimating all horizons at once yield any better results than forecasting each

separately, thus taking full advantage of the DMS framework. The definition of non-parametric

DMS by Bhansali is constrained to model design or choice. He thus omits work on the estimation

approach to DMS where the focus is not, as in the parametric approach, on the 1S parameters,

but on the multi-step parameters that matter for forecasting.

7 Robustness of multi-step forecasts from ARMA models.

Tiao and Xu (1993) develop an extensive analysis of the properties of the DMS forecasts generated

by an exponential smoothing formula—the FGP—which is estimated when the (true) DGP follows

an ARIMA(p, d = 0 or 1, q). They, thus, extend the results by Cox (1961) and show that multi-step

estimation may be preferable. They motivate their study by comparing IMS and DMS forecasting

properties for series A, from Box and Jenkins (1976): they fit an ARIMA(0, 1, 1) model where
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the moving average parameter, θ, is estimated by minimizing the in-sample multi-step squared

residuals implied by the exponential smoothing formula. The estimates hence depend on the

forecast horizon. The authors use the mean corrected series and let the sample size vary from 101

to 157 observations. They report the ratios of the average (over the resulting 57 outcomes) squared

forecast error for the IMS over those from the DMS estimation technique. The forecast horizon

varies from 2 to 40 and the ratio first decreases with the lead (thus benefitting IMS) until horizon

h = 7, and then it establishes itself between about 1.3 and 1.6. It must be noted, though, that the

estimate θ̂h increases with h and, from observation h = 15 onwards, it is unity, thus implying that

the forecast is simply the sample average.

The authors extend the framework in Cox (1961) to a process {yt} which follows an ARIMA(p, d, q),

φ (L) (1− L)d yt = ξ (L) εt, (11)

where φ (L) and ξ (L) are polynomials—whose roots are stationary—of orders, respectively, p and

q, and d is either 0 or 1. The aim is to analyse the robustness of the h-step ahead forecasts when

these are obtained by the exponential smoothing formula:

ŷT+h,h = (1− θh)
T−1∑
t=0

θthyT−t, (12)

and the forecast error is given by:

êT+h,h = yT+h − ŷT+h,h. (13)

The asymptotic h–step ahead MSFE is, in R ∪{−∞,+∞},

σ2 (h, θ) = lim
T→∞

E
[
ê2T+h,h

]
.

The authors show that the MSFE can be decomposed into the sum of the variance of the h-step

ahead forecast errors under the ‘true’ model plus the squared bias introduced by the misspecifica-

tion. This allows them to derive the exact formula for σ2 (h, θ), which exists for θ ∈ (−1, 1) , when

d = 1, and for θ ∈ (−1, 1] , for d = 0.

If {yt} follows an ARIMA(1, 0, 1), then:

yt − φyt−1 = εt − ξεt−1,
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which is referred to as the (φ, ξ) model and the forecasting model is, then, denoted by (1, θ). Tiao

and Xu, then, derive the minimum of σ2 (h, θ), for given h, and it is obtained for:

θ∗h =

 (1−
√
c) (φ+ c)−1

, for (φ, ξ) ∈ S,

1, otherwise,

where c = (1 + ξ) (φ− ξ) (1− φξ)
[
(1 + φ)φh−1 − 1

]
and S is some region of [−1, 1]× [−1, 1] which

they define. Let r (h;φ, ξ) be the ratio of σ2 (h, θ∗h) over the MSFE implied by the true model; it is

a measure of the efficiency loss. The authors show that r (1;φ, ξ) < 1.2 over a wide region around

φ = ξ, or when φ > ξ > 0, or when 2
3 < φ ≤ 1; and it is moderate over a large part of the parameter

space, as is often the case in empirical work, and which is one of the reasons of the widespread use

of the exponential smoothing formula. When (φ, ξ) vary, θ∗h is unity when φ is negative, or when

ξ > φ. As regards the behaviour with respect to h, the supremum of r (h;φ, ξ), when φ > ξ > 0,

is increasing the horizon but bounded as h → ∞ by 4/3. When comparing the DMS and IMS

forecasting performances, the authors mention that the ratio σ2 (h, θ∗1) /σ
2 (h, θ∗h) is increasing in

h for φ > ξ > 0 and it tends to 2 as the horizon goes to infinity.

Under the general ARIMA case, in (11), Tiao and Xu then prove the consistency of the estimate

θ̂h (T ) of θ∗h obtained by minimizing (T − h)−1∑T−h
t=1 ê2t+h,h, the in-sample average of the squared

forecast errors: they show that, under some regularity assumptions:

θ̂h (T ) →
T→∞

θ∗h,

where θ∗h is a—the, if unique—minimizer of σ2 (h, θ) over (−1, 1]. This result extends to forecasts

generated from the FGP:

(1− L)b1 (1− Ls)b2 yt = (1− θ1L) (1− θ2L
s)ut,

where {ut} is assumed to be i.i.d. Gaussian white noise, s ≥ 1, b1 = 0 or 1, b2 = 0 or 1, b1 +b2 > 0,

and the data generating process of the series is

φ (L) (1− L)d1 (1− Ls)d2 yt = ξ (L) εt.

The FGP includes here, inter alia, the ARIMA(0, 2, 2) non-stationary smooth trend model (s =

1, b1 = b2 = 1), and the multiplicative non-stationary seasonal models (s = 12, b1 = b2 = 1) and

(s = 12, b1 = 0, b2 = 1).
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Focusing on the dependence relation between the parameter estimates for varying forecast

horizons, the authors show that if the true DGP is (1− L) yt = (1− θ0L) εt, where εt ∼ IN
(
0, σ2

ε

)
,

then

T 1/2


[
θ̂1 (T )− θ0

]
[
1− θ̂1 (T )

]1/2 ,
[
θ̂2 (T )− θ̂1 (T )

]
1− θ̂1 (T )

, ...,

[
θ̂h (T )− θ̂h−1 (T )

]
1− θ̂1 (T )


′

L→
T→∞

N [0h, Ih] . (14)

This means that when the FGP and DGP coincide, the loss of efficiency from using a multi-step

estimation procedure is

Var
[
T 1/2

(
θ̂h (T )− θ0

)]
Var

[
T 1/2

(
θ̂1 (T )− θ0

)] = 1 + (h− 1)
(
1− θ20

)
, for h ≥ 1.

The results from (14) imply that multi-step estimation can be used to generate diagnostic tests.

The authors suggest two of them and compare them to the Box–Ljung and Dickey–Fuller statistics.

Yet, although the results seem promising in small samples, they are not decisive.

The contribution of Tiao and Xu is, thus, to show that direct multi-step estimation can lead to

more efficient forecasts when the model is misspecified. Yet, when the forecasting model and the

DGP coincide, it is still asymptotically preferable to use IMS in large samples since DMS leads to

an efficiency loss.

Tiao and Tsay (1994) provide some theoretical and empirical considerations for the use of

multi-step (“adaptive”) estimation for forecasting. Their focus is on long-memory processes which

can be represented by ARFIMA models. They compare the resulting forecasts to those obtained

via single-step or multi-step estimation of a stationary ARIMA model:

(1− αL) yt = (1− ρL) εt,

where |α| < 1, |ρ| < 1 and εt is not modeled since it is known that the FGP is misspecified for the

DGP. The resulting h-step ahead forecasts and forecast errors are given by:

ŷT+h,h =

 αyT − ρεT , for h = 1,

αh−1ŷT+1,1, for h ≥ 2,
and êT+h,h = yT+h − αh−1 (αyT − ρεT ) ,

which imply that the variances of the forecast errors are

Var
[
êT+h,h

]
=


σ2
ε , for h = 1, σ2

y

(
1− 2αhγh + α2h

)
+ α2 (h− 1) ρ2σ2

ε

+2αh−1ρCov
[
yT+h − αhyT , εt

]
,

for h ≥ 2,
(15)
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where σ2
y and σ2

ε are the variances of yt and εt, respectively, and γh is the lag h autocorrelation of

yt. Thus, multi-step estimation would lead to minimizing the variance in (15), and optimal values

would depend on the horizon. The authors compare the Monte Carlo MSFEs from one-step and

multi-step estimation to the ‘true’ forecast error variances obtained by using the DGP:

(1− L)d yt = ut and ut ∼ IN
(
0, σ2

u

)
,

for the two values d = 0.25 and 0.45 (i.e. close to the non-stationarity coefficient of 0.5). They

do not mention the sample size used for estimation, but report the forecast statistics up to 200

hundred steps ahead. Their results show that the loss from using the misspecified DMS ARIMA

is never more than 5% in terms of MSFE and, in fact, almost always less than 1% when d = 0.25.

The gain from DMS versus IMS is not significant—yet positive—when d = 0.25, but it is so, and

rapidly increasing with the horizon, for almost non-stationary processes: it is about 6% for h = 4,

13% at h = 10, 26% at h = 20, 57% at h = 50 and 70% for h = 100 or 200. In practice, though, the

distribution of {yt} is not known and (15) cannot be computed; yet the modeler can still compute

some estimates by minimizing the in-sample squares of the forecast errors êt+h,h for t = 1, ..., T .

Tiao and Tsay then apply their method to the prediction of the differences in the series of the

U.S. monthly consumer price index for food from 01/1947 to 07/1978, which have been reported

in previous studies to be well modelled by an ARFIMA(0, 0.423, 0) process. Using samples of 80

observations, the authors estimate the models used for the Monte Carlo and compare the resulting

empirical MSFEs, computed as the average of the squared out-of-sample forecast errors. Their

results strongly favour multi-step estimation of an ARIMA(1, 1) over the other two techniques at

all horizons and especially at large ones (h ≥ 40). Tiao and Tsay conclude by noting that one the

advantages of DMS is its estimation simplicity and the fact that it can be extended to forecast

linear aggregates of future observations.

In his comment on Tiao and Tsay (1994), Peña (1994) suggests another case when multi-step

estimation leads to better forecasting properties. He assumes that the DGP is such that it presents

an additive outlier (unknown to the modeler):

xt = zt + ω.1{t=T},

26



Direct multi-step estimation and forecasting

and that ∆zt follows an AR(1) process without intercept and defines:

yt = ∆xt = ∆zt + ω
(
1{t=T} − 1{t=T+1}

)
.

Assume that the autoregressive coefficient of {yt}, α, is estimated by minimizing the in-sample

multi-step forecast errors. Denote the resulting estimator by α̂h, where

α̂h =
(∑

yt+hyt∑
y2
t

)1/h

= r
1/h
h .

Therefore, in the presence of the outlier

α̂h =
(
ω (zT+h + zT−h − zT+h+1 − zT−h+1) +

∑
zt+hzt

2ω2 + 2ω (zT − zT+1) +
∑
z2
t

)1/h

, for h > 1,

α̂1 =
(
ω (zT+1 + zT−1 − zT+2 − zT ) +

∑
zt+1zt

2ω2 + 2ω (zT − zT+1) +
∑
z2
t

)
,

and α̂1 is, hence, more affected by the outlier than α̂h, (h > 1). Multi-step estimation may

thus provide more robust estimates of the true parameters. The author notes also that such an

estimation method can be used for diagnostic purposes.

In a comment about the computation of forecast intervals, Tsay (1993) suggests the use of

multi-step (adaptive, for him) forecasting. His rationale is that all statistical models are imper-

fect representations of the reality and that, when it comes to forecasting, local approximations are

more relevant than global ones. The two main implications of these remarks are that the maximum

likelihood principle does not apply and that since “different forecast horizons have different local

characteristics,” different models should be fitted for each forecast. The author then considers fore-

casting the U.S. quarterly unemployment rate as in Chatfield (1993). The estimates are computed

by minimizing the in-sample sum of squares of the multi-step residuals obtained by assuming that

the data generating process can be approximated by an AR(2) model. This method results in

non-linear estimation. This follows the technique used in Tiao and Tsay (1994). Tsay provides the

point forecasts up to 12-step ahead together with the 95% prediction interval from the in-sample

empirical distribution of the multi-step residuals. He compares his results to those obtained by

fitting an AR(1) and an ARIMA(1, 1, 0) model. Estimation over a sample of 48 observations leads

to the AR(2):

yt = .4409 + 1.5963yt−1 − .6689yt−2 + εt,

which implies that the series is nearly integrated with a root of 0.9274. The author finds that
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the multi-step point forecasts are more accurate than those obtained by the other models. The

prediction interval does not necessarily increase with the horizon for the “adaptive” forecast and it

has the same amplitude as that of the AR(2) but, contrary to the latter, always (except at 12 steps

ahead) contains the true outcome. The ARIMA model does contain the realised value too, but the

forecast interval is much larger than that of the previous two models. The author concludes that

multi-step estimation does indeed yield a positive outcome.

In their article, Lin and Tsay (1996) study whether using cointegrating properties improve

long-term forecasting. In an empirical analysis, they compare several forecasting techniques to

an ‘adaptive’ procedure of multi-step forecasts, which they use as a benchmark since it does not

postulate the existence of a true model. They use a non-stationary VAR(p) model for the vector

of n variables:

xt = τ +
p∑
i=1

Υixt−i + εt,

where the εt ∼ IN (0,Σ). It is assumed that, letting Υ (L) =
∑p
i=1 ΥiL

i, the series {Ψi}0∞ is such

that [Υ (L)]−1 =
∑∞
i=0 ΨiL

i. The h–step ahead forecast error is then given by

eT+h,h =
h−1∑
i=0

ΨiεT+h−i.

The DMS multi-step parameter estimates are given by minimizing the in-sample sum of the squared

et,h. This implies a non-linear function of the elements of {Υi}1p. For simplicity, Lin and Tsay sug-

gest to simply use the least squares projection of xt onto the space spanned by (xt−h, ...,xt−h−p+1)

and a constant, for t = h+p, ..., T . The computing time of this alternative estimator is much lower.

Lin and Tsay compare their DMS forecasts to those obtained by cointegrated VARs for seven

financial and macro-economic data sets. The vector processes are of dimension varying from 3 to

5 and are estimated over samples of 230 to 440 observations. The criterion used for analysis is

the square root of the average trace of the MSFE. Their results show that multi-step techniques

provide a greater forecast accuracy (up to a 60% gain), but for long horizon (beyond 50) only two

of the series still exhibit a gain from using DMS. The authors find it difficult to account for these

results.
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Discussion

The articles summarised here provide a vast array of justifications for, and successful examples of

the use of DMS methods. They confirm that three main types of model misspecification benefit

direct multi-step forecasting, namely misspecified unit-roots, neglected residual autocorrelation

and omitted location shifts–although the latter two can be thought of as representations of the

same phenomenon. They also suggest that the success or failure of DMS can be used a model

specification test. Peña shows that DMS estimates are more robust to additive outliers than one-

step, but the practical use of this feature for forecasting may not be so significant in practice if

indeed a shift occurs. Finally, Lin and Tsay, like Bhansali (1999), contrast the two ways to proceed

with DMS estimation and forecasting: via either (i) using the same FGP for both IMS and DMS, the

DMS estimates being computed by minimizing the implied in-sample h–step residuals, which can

be non-linear functions of the FGP parameters; or by (ii) using a different model at each horizon

where it is the multi-step parameters—defined as the coefficients from a projection of yt on the

information set up to time (t− h)—which are estimated.

8 When does DMS work?

Clements and Hendry (1996) develop an extended analysis of multi-step estimation for stationary

and integrated processes. Their focus is on VAR(1) models as in:

xt = Υxt−1 + εt, (16)

where the n-vector process {εt} satisfies E[εt] = 0. From an end-of-sample forecast origin T :

xT+h = ΥhxT +
h−1∑
i=0

ΥiεT+h−i, (17)

and the IMS and DMS forecasts are given respectively by

x̂T+h = Υ̂hxT , and xT+h = Υ̃hxT ,

where Υ̂ and Υ̃h are the estimators of Υ and Υh obtained by minimizing, respectively, the 1–step

and h–step ahead in-sample forecast errors. The authors note that the relative accuracy of DMS

versus IMS is given by that of the powered estimate versus the estimated power. Direct estimation of
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Υ̃h has, therefore, some potential when Υ̂ is badly biased for Υ, or when E[xT+1 | xT ] = ΨxT but

E[xT+h | xT ] 6= ΨhxT . However, they remark also that in stationary processes, misspecification

of the DGP is not sufficient to advocate the use of DMS, since Υ̂ is the OLS and Υ̃h converges

towards the unconditional expectation with Υh tending to zero as h increases. Hence, increasing

divergence between Υ̂ and Υ̃h is unlikely. Moreover, DMS is inefficient in small samples, so

that if εt ∼ IN
(
0, σ2

εIn
)
, biases are unlikely to be enough for a gain to appear. Thus, Clements

and Hendry note that if εt follows a negative moving average, there may be some potential for

DMS. They derive a taxonomy of forecast errors and show that the only terms in common for

both methods are those of error accumulation, namely
∑h−1
i=0 ΥiεT+h−i in the framework above.

Simulating the small sample estimation biases, they show, for several stationary values—0, 0.4

and 0.8—of the autoregressive coefficient in a univariate AR(1) process without intercept, that for

sample sizes ranging from 10 to 100, the two step ahead DMS does not yield better estimates of

the powered coefficient than the squared IMS.

This result is specific to finite samples as Chevillon and Hendry (2005) show: when estimating

(16) with an additional drift by OLS and (17), with a drift also, by GMM, with a HAC covariance

matrix estimator, DMS is asymptotically more efficient than IMS in the case of stationary processes

with positive slope. Indeed, in the univariate case, denoting by êh and ẽh the IMS and DMS forecast

errors at horizon h using GMM estimation, and ρ the slope coefficient, these authors show that:

h
(
E
[
ê2h
]
/E
[
ẽ2h
]
− 1ρ

)
→

h→∞

2ρ
(1− ρ2) (2− ρ)

,

the latter being of the same sign as ρ, as long as |ρ| < 1. In the case of integrated processes, this

result collapses and IMS always dominates DMS.

A Monte Carlo analysis by Clements and Hendry, of the forecasts from the ‘nonseasonal Holt–

Winters Model’ illustrates the relative behaviours of the IMS and DMS techniques in their frame-

work. The data is generated by the sum of unobserved components for the trend, intercept and

irregular elements:

yt = µt + εt,

µt = µt−1 + βt + δ1t,

βt = βt−1 + δ2t.
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The disturbances εt, δ1t and δ2t are assumed to be normally distributed and independent through

time and from one another (at all lags and leads), with zero means and variances, respectively, σ2
ε,

σ2
δ1

and σ2
δ2

. This model can be reduced to an ARIMA(0, 2, 2)—or restrictions thereof—with or

without a drift, or a deterministic trend. It is also possible to allow for stationary autoregressive

roots:

(1− τ1L) (1− τ2L) yt = δ2t + (1− L) δ1t.

The authors use six AR forecasting models: AR(2) models in levels or differences, with or without

an imposed unit-root, with or without an intercept The main results are that DMS and IMS are

somewhat equivalent when the model either estimates the unit-root or neglects MA components.

However, when these two effects are present, there is a gain for DMS (seemingly increasing with the

horizon) unless the MA term is effectively cancelled by an AR root, or when the model is under-

parameterized for the DGP. The forecasts from using the pseudo-true values of the parameters

under the DGP considered allow to separate model misspecification and estimation uncertainty

effects. In general, the misspecification effects are constant or even decrease with the horizon, and

multi-step forecasts can be more accurate in the very near future if the forecast error function is

better approximated. In terms of estimation, DMS is more accurate when one (or two) unit-root

is present in the DGP but not imposed in the model, and in the presence of omitted MA errors

(the conjunction of both seems necessary, as opposed to either alone). A significant gain is present

also when an intercept is estimated in conjunction with the other two effects, especially when the

FGP is an AR(1), for which IMS fares badly. These results help explain why Stoica and Nehorai

(1989) found that a model close to an ARIMA(0, 1, 2) approximated by an AR(1) leads to improved

forecasting performance when using DMS but not when the FGP is an AR(6) .

The authors then focus on the driftless ARIMA(0, 1, 1) DGP, where the MA component is

omitted in the forecasting models and the unit-root is estimated. They use four estimators for the

hth power of the slope in yt = ρyt−1 + εt and εt = ζt + θζt−1, where ζt ∼ IN
(
0, σ2

ζ

)
:

(ρ̂1S )h =
(∑

ytyt−1∑
t y

2
t−1

)h
and ρ̃DMSh

=
∑
ytyt−h∑
t y

2
t−h

,

(ρ̂IV )h =
( ∑

ytyt−2∑
t yt−1yt−2

)h
and ρ̃IV DMSh

=
∑
ytyt−h−1∑

t yt−hyt−h−1
.
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They show that

T
(
(ρ̂1S)h − 1

)
⇒

(∫ 1

0

W (r)2 dr
)−1

h

[
1
2

(
W (1)2 − 1

)
+

θ

(1 + θ)2

]
,

T
(
(ρ̂IV )h − 1

)
⇒

(∫ 1

0

W (r)2 dr
)−1

h

2

(
W (1)2 − 1

)
,

T
(
ρ̃DMSh

− 1
)

⇒
(∫ 1

0

W (r)2 dr
)−1

h

[
1
2

(
W (1)2 − 1

)
+

θ

h (1 + θ)2

]
,

T
(
ρ̃IV DMSh

− 1
)

⇒
(∫ 1

0

W (r)2 dr
)−1

h

2

(
W (1)2 − 1

)
,

and provide small sample approximations of the distributions. The leftward non-centrality of IMS

therefore increases with h, whereas that of DMS does not. The instrumental estimators seem

better. Simulations illustrate these results.

This framework is also analysed in Chevillon and Hendry (2005) who now allow for a drift in the

random walk. This induces the presence of a deterministic trend which asymptotically dominates

estimation, yielding the same asymptotic accuracy for both methods. In finite sample though,

disparities appear: DMS is more accurate when the drift is ‘small’ compared to the variance of the

disturbances and when the latter exhibit negative serial correlation. Introducing the concept of

‘weak’ trend whereby the drift coefficient vanishes to zero asymptotically at the rate of O
(
T−1/2

)
,

Chevillon (2005b) derives asymptotic distributions where he allows for both the stochastic and

deterministic trends to have an impact on estimation. The model he uses is:

yt =

(
h−1∑
i=0

ρi

)
τT + ρhyt−h + εt, for h ≥ 1,

where τT =
ψ√
T
, Var[εt] = σε and σ2 = limT→∞ T−1E

[∑T
t=1 εt

]
. The resulting IMS,

(
τ̂
{h}
T , ρ̂hT

)
,

and DMS,
(
τ̃h,T , ρ̃h,T

)
, estimators are such that √

T (τ̃h,T − τh,T )

T
(
ρ̃h,T − 1

)
−
 √

T
(
τ̂
{h}
T − τh,T

)
T
(
ρ̂hT − 1

)
⇒ (h− 1) θ∫ 1

0
[Kψ,φ (r)]2 dr −

(∫ 1

0
Kψ,φ (r) dr

)2

[∫ 1

0
Kψ,φ (r) dr
−1

]
,

(18)

where Kψ,φ is a drifting Ornstein-Uhlenbeck process defined as

Kψ,φ (r) = ψfφ (r) + σ

∫ r

0

eφ(r−s)dW (s) ,

with W (r) a Wiener process on [0, 1] and:

fφ (·) : r → eφr − 1
φ

if φ 6= 0, and f0 (r) = r. (19)
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The difference between the two types of estimators is a function of ‖ψ, σ‖. In turn , this translates

in the forecast errors which the author shows to be complex functions of the forecast horizon and

parameters. Analysis of the distributions and Monte Carlo simulation prove that the weak trend

framework accurately represents the finite sample behaviours and that it is the ratio ψ/σ that

defines what ‘finite’ means in this context.

Deterministic misspecification has also been shown to benefit direct multi-step estimation. As

mentioned in Chevillon and Hendry (2005), occasional breaks in the level of a trending process

can generate serial correlation of the residuals from a constant parameter model and lead to the

cases studied by these authors. In an unpublished paper from his doctorate thesis, Chevillon also

analyses the influence of recent unnoticed breaks. He shows that DMS is more efficient at estimating

the dynamic properties relevant for forecasting and that the potential occurrence of deterministic

shocks hence advocate using direct methods. This aspect is confirmed in an empirical forecasting

exercise for the South African GDP over 1973-2000 where a multi-step method designed by Aron

and Muellbauer (2002) and variants thereof beat all of 30 rival techniques (Chevillon 2005a).

Discussion

These authors confirm, with their Monte Carlo, and prove analytically what previous authors had

found in specific cases, namely that estimated unit-roots, structural breaks and omitted negative

residual autocorrelation are key to the success of DMS forecasting. As opposed to some other

authors, they use as a DMS model the projection of the variable onto the space spanned by its lags

at and beyond h: it is the same autoregressive dynamics which is estimated. Their simulations also

shed light on earlier results. The influence of small drifts is shown and it is seen that in general

DMS is to be preferred when the data are—stochastically or deterministically—non-stationary or

when the available sample is too small for reliable inference.
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9 Direct Multi-step estimation and forecasting

9.1 Design of forecast estimators

In this section, we provide a general definition for the two types of forecasts which we have studied so

far, namely the iterated one-step ahead (IMSh) and direct h-step (DMSh). We borrow a framework

for the design of forecast estimators from Ericsson and Marquez (1998) and extend it to allow for

dynamic estimation. Here, the modeler is interested in n endogenous variables, x, and assumes

that they depend on their lagged values, up to some p ≥ 0, on some weakly exogeneous—which

they actually may or may not be—variables z and on some vector of c parameters ϕ. The model

specifies some error process {εt} —the distribution thereof may depend on ϕ and exhibit any

form of autocorrelation, heteroscedasticity or non-stationarity—and is assumed to be valid over a

sample of size T +H, so that there exists a n-vector function f (·), such that:

f (xt, ...,xt−p, zt,ϕ, εt) = 0, for t = p, ..., T, ..., T +H. (20)

The sample is split into two: estimation is conducted over the first T observations and this is

used to forecast the remaining H. Equation (20) describes an open model and it is convenient to

transform it in a reduced closed form, solving it for xt. We change the time subscript t to T + i,

and assume—under mild conditions, amongst which linearity of f (·) is most common—that there

exists a suitable transform of f(·), denoted by g(·), such that positive values of i represent the

dates for which we wish to obtain forecasts in:

xT+i = g (xT+i−1, ...,xT+i−p, zT+i,ϕ, εT+i) , for i = p− T, ...,−1, 0, 1, ...,H. (21)

Notice that this framework—as delineated in (21)—is quite general, and it may be the case that

specific models should be restrictions thereof. For instance, if n = 1, g (·) reduces to a single

equation; it may also be nonlinear and the model could be static—if p = 0—or exclude exogenous

variables.

For forecasting at horizons i > 1, there is a need for assumptions about the vector zt: either it

is assumed strongly exogenous and it is possible to obtain conditional forecasts (see Engle, Hendry,

and Richard, 1983), or a model for its behaviour is used, and in fact z is incorporated in x. The

forecasts are defined by their horizon, i, the actual variable of interest—which can be a transform of
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xT+i—and the specification of its distribution, as given here by (21).2 What values of xT+i−1, ...,

xT+i−p, zT+i, ϕ and εT+i are used in forecasting affects the outcome. For instance, the one-step

ahead forecast, from an end-of-sample forecast origin at T , is obtained when the actual values of

xT , ..., xT−p are used in g (·). And then, for i > 1, by replacing xT+i−1 in the equation with its

corresponding forecast, (21) leads to ‘powered-up’ one-step ahead forecasts, which will be denoted

by IMS and (21), specifying the parameters ϕ and the distributions of the disturbances is thus the

corresponding forecast generating process, or FGP.

Alternatively it is possible to directly estimate the data generating process h steps ahead, for a

fixed h > 1, using a transformed representation of (20). We let kh (·) denote a suitable transform

of f (·)—possibly including some composition—such that:

xT+i = kh(xT+i−h, ...,xT+i−h−p+1,wT+i,φh,νh,T+i), (22)

for i = p− 1 + h− T, ...,−1, 0, 1, ...,H,

where φh, a c-vector of parameters, and νh,t, a n-vector of disturbances are re-parameterizations

of ϕ and εt. The r-vector wt+i is assumed to be a transform of {zt} which achieves a property of

strong exogeneity for the parameters of (22), namely φh. The forecasts {x̃T+i,h; i = 1, ...,H} ob-

tained using kh(·) are the multi-step forecasts of {xT+i; i = 1, ...,H}, using dynamic—or direct—

estimation, the h–step DMS forecasts, generated by the DMS FGP (22). The exogeneity status

of {zT+i} and wT+i may be misspecified in practice; additional uncertainty is generated when

forecasts are used instead of their true realised values, especially given that their own FGPs may

not coincide with their DGPs.

If the modeler knew with certainty the data generating process and it coincided with her model

(20), then both IMS and DMS FGPs would provide the same forecasts. In practice, unfortunately,

(20), (21) and (22) would have to be estimated and depending on which methods are used for

this purpose, the estimated parameters ϕ̂ and φ̃h,3 will lead to different forecasts. The inter-

dependence between estimation and forecasting is therefore intrinsic to the concept of multi-step

forecasting. This, in turn leads to a forecast error taxonomy.
2We assume here that the econometric modeller does not intentionally mis-specify her model. She therefore

considers it to be the data generating process (DGP).
3We assume here that only these parameters are estimated, and that the functional forms are part of the models,

so that we do not write ĝ (·) and k̃ (·), as would happen in the ‘non-parametric’ models presented in Bhansali (2002).
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9.2 A general forecast-error taxonomy

We now borrow from Clements and Hendry who suggest in Clements and Hendry (1998b) and

Hendry (2000) a general forecast error taxonomy which helps us in assessing the advantages of

multi-step estimation. We use the framework presented above but for ease of exposition modify it

slightly. Notice that in (20), fx (·), if it represents the true DGP, provides the—potentially time

dependent—joint density of xt at time t, conditional on Xt−p
t−1 = (xt−1, ...,xt−p), and zt. Assume,

without loss of generality, that {zt} contains only deterministic factors—such as intercepts, trends

and indicators—and that all stochastic variables are included in {xt}. As previously, it is desired to

forecast xT+h, or perhaps of function thereof (e.g. if zt originally contained stochastic variables),

over horizons h = 1, ...,H, from a forecast origin at T . Now, the dynamic model does not coincide

with the data generating process and it specifies the distribution of xt conditional on Xt−r
t−1, with lag

length r, deterministic components dt and implicit stochastic specification defined by its parameters

ψt. This model is fitted over the sample t = 0, ..., T, so that parameter estimates are a function of

the observations, represented by:

ψ̂T = ΨT

(
X̃0
T ,D

0
T

)
, (23)

where X̃ denotes the measured data and, as before D0
t = (dt, ...,d0). A sequence of forecasts

{x̂T+h|T } is produced as a result. The subscript on ψ̂ in (23) denotes the influence of the sample

size. Let ψeT = ET
[
ψ̂T

]
, where it exists. Because the underlying densities may be changing over

time, all expectation operators must be time dated. Future values of the stochastic variables are

unknown, but those of deterministic variables are known; there, therefore, exists a function gh (·)

such that

x̂T+h|T = gh
(
X̃T−r+1
T ,DT+1

T+h, ψ̂T

)
. (24)

The corresponding h–step ahead expected forecast error is, thus, the expected value of eT+h|T =

xT+h − x̂T+h|T , and is given by

ET+h

[
xT+h − x̂T+h|T | X0

T , {Z∗}
0
T+h

]
,

where the actual values of the deterministic factors over the forecast period (including any de-

terministic shifts) are denoted by {Z∗}T+1
T+h and {Z∗}0T+h =

[
{Z∗}T+1

T+h ,Z
0
T

]
; and the expectation
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operator is dated T +h to take account of the model specification of the deterministic components

between T +1 and T +h. The expectation of x̂T+h|T , conditional on the information available at T

and on the assumptions made about the interval T + 1, ..., T + h, is the model induced conditional

expectation. Define, from an origin T, the h–step disturbance:

εT+h|T = xT+h − ET+h

[
xT+h|T | X0

T , {Z∗}
0
T+h

]
. (25)

By construction, ET+h

[
εT+h|T | X0

T , {Z∗}
0
T+h

]
= 0 and εT+h|T is therefore an innovation against

all available information. However, even for correctly-observed sample data, it is not, in general,

the case that

ET+h

[
eT+h|T | X0

T , {Z∗}
0
T+h

]
= 0

as we, now, show.

Using (25), the forecast error eT+h|T = xT+h − x̂T+h|T from the model based on (24), can be

decomposed as

eT+h|T = + ET+h

[
xT+h | X0

T , {Z∗}0T+h

]
− ET+h

[
xT+h | X0

T ,Z
0
T+h

]
(ia)

+ ET+h

[
xT+h | X0

T ,Z
0
T+h

]
− ET

[
xT+h | X0

T ,Z
0
T+h

]
(ib)

+ ET
[
xT+h | X0

T ,Z
0
T+h

]
− ET

[
xT+h | X0

T ,D
0
T+h

]
(iia)

+ ET
[
xT+h | X1

T ,D
1
T+h

]
− ET

[
x̂T+h|T | XT−r+1

T ,DT+1
T+h,ψ

e
T

]
(iib)

+ ET
[
x̂T+h|T | XT−r+1

T ,DT+1
T+h,ψ

e
T

]
− ET

[
x̂T+h|T | X̃T−r+1

T ,DT+1
T+h,ψ

e
T

]
(iii)

+ ET
[
x̂T+h|T | X̃T−r+1

T ,DT+1
T+h,ψ

e
T

]
− x̂T+h|T (iv)

+ εT+h|T (v)

The first two rows arise from structural change affecting deterministic (ia) and stochastic (ib)

components respectively; the third and fourth , (iia) and (iib), from model misspecification de-

composed by deterministic and stochastic elements; the fifth (iii) from forecast origin inaccuracy;

(iv) represents estimation uncertainty; and the last row, (v), is the unpredictable stochastic com-

ponent.

When {Z∗}0T+h = Z0
T+h (i.e. in the absence of deterministic shifts), then (ia) is zero; and, in

general, the converse holds, that (ia) being zero entails no deterministic shifts. When ET+h [·] =

ET [·] (so that there are no stochastic breaks), (ib) is zero; but (ib) can be zero despite stochastic

breaks, provided these do not indirectly alter deterministic terms. When the deterministic terms
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in the model are correctly specified, so that Z0
T+h = D0

T+h then (iia) is zero, and again the

converse seems to hold. In the case of correct stochastic specification, so that ψeT summarises the

effects of X1
T , then (iib) is zero; but now the converse is not true: (iib) can be zero in seriously

misspecified models. Next, when the data are accurate (especially at the forecast origin), so that

X = X̃, (iii) is zero but the converse is unclear. When estimated parameters have zero variances, so

that x̂T+h|T = ET
[
x̂T+h|T | X̃T−r+1

T ,DT+1
T+h,ψ

e
T

]
, then (iv) is zero and the converse holds almost

surely. Finally (v) is zero if and only if the world is non-stochastic.

Thus, the taxonomy includes elements of the main sources of forecast error, partitioning these

by whether or not the corresponding expectation is zero. For there to be a gain from DMS, it

must be obtained through estimation uncertainty (iv), possibly interacting with misspecification

of deterministic or stochastic elements, (iia) and (iib). This is why the literature has shown

that direct mutli-step estimation is beneficial for forecasting essentially in two contexts: when

the model is misspecified for the stochastic properties of the process (omitted unit-roots) or when

deterministic properties alter and go unnoticed, as in the context of breaks, which may reinforce

the previous type of misspecification via induced serial correlation of the residuals or long-memory.

10 Conclusion

This paper has presented a review of the existing work on direct multi-step estimation for forecast-

ing at varying horizons. We have show that this strain of literature has produced a vast amount

of theoretical and empirical evidence favouring the use of this technique. Unfortunately, the diver-

sity of approaches had made it difficult to draw a definite conclusion about its when’s and why’s.

Here, we have shown that from the early contributions, the analyses have evolved towards either

using DMS criteria for the design of forecasting models, or proper DMS estimation. In the light of

our review, although the gain from using IMS or DMS varies with the horizon and the stochastic

properties of the data, it is clear that the latter technique can be asymptotically more efficient

than the former even if the model is well-specified. This result is explained by the improvement

in the variance of the multi-step estimator resulting from direct estimation. It thus appears that

the misspecification of the error process in the case of DMS estimation is not so detrimental to the

accuracy of the estimators. However, the limiting distributions reflect only partially the estimation
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properties of the methods. Indeed, in finite samples, the absence of bias can never be perfectly

achieved and, hence, DMS can prove a successful technique for obtaining actual estimates and not

only for reducing the multi-step variances—and indeed with respect to the latter IMS could prove

more precise. There is little hope for success for DMS in finite samples when the data are station-

ary and the models are well-specified. By contrast, when the models may be misspecified, DMS

provides accuracy gains, both asymptotically and in finite samples. As we discussed in a general

framework which allowed for a study of the various causes of forecast error, the main features that

advocate DMS use are stochastic or deterministic non-stationarity The literature showed that it

could originate from breaks, unit-roots, or fractional integration.

We can broadly separate the future research agenda into two categories. On the one hand,

the existing trend on analyses of models and circumstances will continue. The influence of breaks

need be evaluated further, in particular using the link between occasional shocks and fractional

cointegration. Co-breaking—linear combinations of variables which are insensitive to the breaks—

would be valuable here. Non-linear estimation and breaks that occur after the forecast origin

also need more study. On the other hand, a fruitful strain revolves around model design. Recent

work on the link between in-sample regressor collinearity and out-of-sample forecast performance

seems an interesting route to pursue. In particular, the progress made regarding forecasting using

factor analysis—when more variables than observations are available—point towards studying DMS

properties since IMS is not an option in this context.
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